A high-order boundary integral method for surface diffusions on elastically stressed axisymmetric rods

Many applications in materials involve surface diffusion of elastically stressed solids. Study of singularity formation and long-time behavior of such solid surfaces requires accurate simulations in both space and time. Here we present a high-order boundary integral method for an elastically stresse...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics. - 1998. - 228(2009), 12 vom: 01. Juli, Seite 4625-4637
1. Verfasser: Li, Xiaofan (VerfasserIn)
Weitere Verfasser: Nie, Qing
Format: Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:Journal of computational physics
Schlagworte:Journal Article Axisymmetric domain Boundary integral method Elastic stress Integration factor methods Surface diffusion
LEADER 01000caa a22002652 4500
001 NLM25388442X
003 DE-627
005 20250219064625.0
007 tu
008 231224s2009 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0846.xml 
035 |a (DE-627)NLM25388442X 
035 |a (NLM)26487788 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Xiaofan  |e verfasserin  |4 aut 
245 1 2 |a A high-order boundary integral method for surface diffusions on elastically stressed axisymmetric rods 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Revised 01.10.2020 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Many applications in materials involve surface diffusion of elastically stressed solids. Study of singularity formation and long-time behavior of such solid surfaces requires accurate simulations in both space and time. Here we present a high-order boundary integral method for an elastically stressed solid with axi-symmetry due to surface diffusions. In this method, the boundary integrals for isotropic elasticity in axi-symmetric geometry are approximated through modified alternating quadratures along with an extrapolation technique, leading to an arbitrarily high-order quadrature; in addition, a high-order (temporal) integration factor method, based on explicit representation of the mean curvature, is used to reduce the stability constraint on time-step. To apply this method to a periodic (in axial direction) and axi-symmetric elastically stressed cylinder, we also present a fast and accurate summation method for the periodic Green's functions of isotropic elasticity. Using the high-order boundary integral method, we demonstrate that in absence of elasticity the cylinder surface pinches in finite time at the axis of the symmetry and the universal cone angle of the pinching is found to be consistent with the previous studies based on a self-similar assumption. In the presence of elastic stress, we show that a finite time, geometrical singularity occurs well before the cylindrical solid collapses onto the axis of symmetry, and the angle of the corner singularity on the cylinder surface is also estimated 
650 4 |a Journal Article 
650 4 |a Axisymmetric domain 
650 4 |a Boundary integral method 
650 4 |a Elastic stress 
650 4 |a Integration factor methods 
650 4 |a Surface diffusion 
700 1 |a Nie, Qing  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational physics  |d 1998  |g 228(2009), 12 vom: 01. Juli, Seite 4625-4637  |w (DE-627)NLM098188844  |x 0021-9991  |7 nnns 
773 1 8 |g volume:228  |g year:2009  |g number:12  |g day:01  |g month:07  |g pages:4625-4637 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 228  |j 2009  |e 12  |b 01  |c 07  |h 4625-4637