Temperature-dependent responses of the photosynthetic and chlorophyll fluorescence attributes of apple (Malus domestica) leaves during a sustained high temperature event

Copyright © 2015 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 97(2015) vom: 06. Dez., Seite 139-46
1. Verfasser: Greer, Dennis H (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Chlorophyll fluorescence Field measurements Heat event Photorespiration Photosynthesis Respiration Temperature responses Photosystem II Protein Complex Chlorophyll 1406-65-1
Beschreibung
Zusammenfassung:Copyright © 2015 Elsevier Masson SAS. All rights reserved.
The objective of this study was to follow changes in the temperature-dependent responses of photosynthesis and photosystem II performance in leaves of field-grown trees of Malus domestica (Borkh.) cv. 'Red Gala' before and after exposure to a long-term heat event occurring late in the growing season. Light-saturated photosynthesis was optimal at 25 °C before the heat event. The high temperatures caused a reduction in rates at low temperatures (15-20 °C) but increased rates at high temperatures (30-40 °C) and a shift in optimum to 30 °C. Rates at all temperatures increased after the heat event and the optimum shifted to 33 °C, indicative of some acclimation to the high temperatures occurring. Photosystem II attributes were all highly temperature-dependent. The operating quantum efficiency of PSII during the heat event declined, but mostly at high temperatures, partly because of decreased photochemical quenching but also from increased non-photochemical quenching. However, a further reduction in PSII operating efficiency occurred after the heat event subsided. Non-photochemical quenching had subsided, whereas photochemical quenching had increased in the post-heat event period and consistent with a greater fraction of open PSII reaction centres. What remained uncertain was why these effects on PSII performance appeared to have no effect on the process of light-saturated photosynthesis. However, the results provide an enhanced understanding of the impacts of sustained high temperatures on the photosynthetic process and its underlying reactions, notably photochemistry
Beschreibung:Date Completed 06.09.2016
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2015.10.002