Multimodal Deep Autoencoder for Human Pose Recovery

Video-based human pose recovery is usually conducted by retrieving relevant poses using image features. In the retrieving process, the mapping between 2D images and 3D poses is assumed to be linear in most of the traditional methods. However, their relationships are inherently non-linear, which limi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 12 vom: 20. Dez., Seite 5659-70
1. Verfasser: Hong, Chaoqun (VerfasserIn)
Weitere Verfasser: Yu, Jun, Wan, Jian, Tao, Dacheng, Wang, Meng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM253540380
003 DE-627
005 20231224170435.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2015.2487860  |2 doi 
028 5 2 |a pubmed24n0845.xml 
035 |a (DE-627)NLM253540380 
035 |a (NLM)26452284 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hong, Chaoqun  |e verfasserin  |4 aut 
245 1 0 |a Multimodal Deep Autoencoder for Human Pose Recovery 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.08.2016 
500 |a Date Revised 27.01.2016 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Video-based human pose recovery is usually conducted by retrieving relevant poses using image features. In the retrieving process, the mapping between 2D images and 3D poses is assumed to be linear in most of the traditional methods. However, their relationships are inherently non-linear, which limits recovery performance of these methods. In this paper, we propose a novel pose recovery method using non-linear mapping with multi-layered deep neural network. It is based on feature extraction with multimodal fusion and back-propagation deep learning. In multimodal fusion, we construct hypergraph Laplacian with low-rank representation. In this way, we obtain a unified feature description by standard eigen-decomposition of the hypergraph Laplacian matrix. In back-propagation deep learning, we learn a non-linear mapping from 2D images to 3D poses with parameter fine-tuning. The experimental results on three data sets show that the recovery error has been reduced by 20%-25%, which demonstrates the effectiveness of the proposed method 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Yu, Jun  |e verfasserin  |4 aut 
700 1 |a Wan, Jian  |e verfasserin  |4 aut 
700 1 |a Tao, Dacheng  |e verfasserin  |4 aut 
700 1 |a Wang, Meng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 24(2015), 12 vom: 20. Dez., Seite 5659-70  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:24  |g year:2015  |g number:12  |g day:20  |g month:12  |g pages:5659-70 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2015.2487860  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2015  |e 12  |b 20  |c 12  |h 5659-70