|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM253540380 |
003 |
DE-627 |
005 |
20231224170435.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2015 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TIP.2015.2487860
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0845.xml
|
035 |
|
|
|a (DE-627)NLM253540380
|
035 |
|
|
|a (NLM)26452284
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Hong, Chaoqun
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Multimodal Deep Autoencoder for Human Pose Recovery
|
264 |
|
1 |
|c 2015
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 18.08.2016
|
500 |
|
|
|a Date Revised 27.01.2016
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Video-based human pose recovery is usually conducted by retrieving relevant poses using image features. In the retrieving process, the mapping between 2D images and 3D poses is assumed to be linear in most of the traditional methods. However, their relationships are inherently non-linear, which limits recovery performance of these methods. In this paper, we propose a novel pose recovery method using non-linear mapping with multi-layered deep neural network. It is based on feature extraction with multimodal fusion and back-propagation deep learning. In multimodal fusion, we construct hypergraph Laplacian with low-rank representation. In this way, we obtain a unified feature description by standard eigen-decomposition of the hypergraph Laplacian matrix. In back-propagation deep learning, we learn a non-linear mapping from 2D images to 3D poses with parameter fine-tuning. The experimental results on three data sets show that the recovery error has been reduced by 20%-25%, which demonstrates the effectiveness of the proposed method
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
700 |
1 |
|
|a Yu, Jun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wan, Jian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tao, Dacheng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Meng
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g 24(2015), 12 vom: 20. Dez., Seite 5659-70
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g volume:24
|g year:2015
|g number:12
|g day:20
|g month:12
|g pages:5659-70
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TIP.2015.2487860
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 24
|j 2015
|e 12
|b 20
|c 12
|h 5659-70
|