Joint Image Clustering and Labeling by Matrix Factorization

We propose a novel algorithm to cluster and annotate a set of input images jointly, where the images are clustered into several discriminative groups and each group is identified with representative labels automatically. For these purposes, each input image is first represented by a distribution of...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 38(2016), 7 vom: 15. Juli, Seite 1411-24
1. Verfasser: Hong, Seunghoon (VerfasserIn)
Weitere Verfasser: Choi, Jonghyun, Feyereisl, Jan, Han, Bohyung, Davis, Larry S
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM253540054
003 DE-627
005 20231224170434.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2015.2487982  |2 doi 
028 5 2 |a pubmed24n0845.xml 
035 |a (DE-627)NLM253540054 
035 |a (NLM)26452250 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hong, Seunghoon  |e verfasserin  |4 aut 
245 1 0 |a Joint Image Clustering and Labeling by Matrix Factorization 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.06.2017 
500 |a Date Revised 06.06.2017 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We propose a novel algorithm to cluster and annotate a set of input images jointly, where the images are clustered into several discriminative groups and each group is identified with representative labels automatically. For these purposes, each input image is first represented by a distribution of candidate labels based on its similarity to images in a labeled reference image database. A set of these label-based representations are then refined collectively through a non-negative matrix factorization with sparsity and orthogonality constraints; the refined representations are employed to cluster and annotate the input images jointly. The proposed approach demonstrates performance improvements in image clustering over existing techniques, and illustrates competitive image labeling accuracy in both quantitative and qualitative evaluation. In addition, we extend our joint clustering and labeling framework to solving the weakly-supervised image classification problem and obtain promising results 
650 4 |a Journal Article 
700 1 |a Choi, Jonghyun  |e verfasserin  |4 aut 
700 1 |a Feyereisl, Jan  |e verfasserin  |4 aut 
700 1 |a Han, Bohyung  |e verfasserin  |4 aut 
700 1 |a Davis, Larry S  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 38(2016), 7 vom: 15. Juli, Seite 1411-24  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:38  |g year:2016  |g number:7  |g day:15  |g month:07  |g pages:1411-24 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2015.2487982  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 38  |j 2016  |e 7  |b 15  |c 07  |h 1411-24