One-Photon Lithography for High-Quality Lipid Bilayer Micropatterns

A relevant question in cell biology with broad implications in biomedicine is how the organization and dynamics of interacting membranes modulate signaling cascades that involve cell-cell contact. The functionalization of surfaces with supported lipid bilayers containing tethered proteins is a parti...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 31(2015), 43 vom: 03. Nov., Seite 11943-50
1. Verfasser: Sánchez, M Florencia (VerfasserIn)
Weitere Verfasser: Dodes Traian, Martín M, Levi, Valeria, Carrer, Dolores C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Ligands Lipid Bilayers
Beschreibung
Zusammenfassung:A relevant question in cell biology with broad implications in biomedicine is how the organization and dynamics of interacting membranes modulate signaling cascades that involve cell-cell contact. The functionalization of surfaces with supported lipid bilayers containing tethered proteins is a particularly useful method to present ligands with membrane-like mobility to cells. Here, we present a method to generate micrometer-sized patches of lipid bilayers decorated with proteins. The method uses an economic microcontact printing technique based on one-photon lithography that can be easily implemented in a commercial laser scanning microscope. We verified that both proteins and lipids freely diffuse within the patterned bilayer, as assessed by z-scan fluorescence correlation spectroscopy and fluorescence recovery after photobleaching. These results suggest that the supported lipid bilayer patterns constitute an optimal system to explore processes involving direct interactions between cells. We also illustrate possible applications of this method by exploring the interaction of cells expressing the Fas receptor and patterns of lipid bilayers containing an agonist antibody against Fas
Beschreibung:Date Completed 27.06.2016
Date Revised 03.11.2015
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.5b02934