Learning shared, discriminative, and compact representations for visual recognition

Dictionary-based and part-based methods are among the most popular approaches to visual recognition. In both methods, a mid-level representation is built on top of low-level image descriptors and high-level classifiers are trained on top of the mid-level representation. While earlier methods built t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 37(2015), 11 vom: 28. Nov., Seite 2218-31
1. Verfasser: Lobel, Hans (VerfasserIn)
Weitere Verfasser: Vidal, René, Soto, Alvaro
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM253425387
003 DE-627
005 20231224170209.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2015.2408349  |2 doi 
028 5 2 |a pubmed24n0844.xml 
035 |a (DE-627)NLM253425387 
035 |a (NLM)26440263 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lobel, Hans  |e verfasserin  |4 aut 
245 1 0 |a Learning shared, discriminative, and compact representations for visual recognition 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 04.01.2016 
500 |a Date Revised 07.10.2015 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Dictionary-based and part-based methods are among the most popular approaches to visual recognition. In both methods, a mid-level representation is built on top of low-level image descriptors and high-level classifiers are trained on top of the mid-level representation. While earlier methods built the mid-level representation without supervision, there is currently great interest in learning both representations jointly to make the mid-level representation more discriminative. In this work we propose a new approach to visual recognition that jointly learns a shared, discriminative, and compact mid-level representation and a compact high-level representation. By using a structured output learning framework, our approach directly handles the multiclass case at both levels of abstraction. Moreover, by using a group-sparse prior in the structured output learning framework, our approach encourages sharing of visual words and thus reduces the number of words used to represent each class. We test our proposed method on several popular benchmarks. Our results show that, by jointly learning mid- and high-level representations, and fostering the sharing of discriminative visual words among target classes, we are able to achieve state-of-the-art recognition performance using far less visual words than previous approaches 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Vidal, René  |e verfasserin  |4 aut 
700 1 |a Soto, Alvaro  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 37(2015), 11 vom: 28. Nov., Seite 2218-31  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:37  |g year:2015  |g number:11  |g day:28  |g month:11  |g pages:2218-31 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2015.2408349  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 37  |j 2015  |e 11  |b 28  |c 11  |h 2218-31