Fusion of range and stereo data for high-resolution scene-modeling

This paper addresses the problem of range-stereo fusion, for the construction of high-resolution depth maps. In particular, we combine low-resolution depth data with high-resolution stereo data, in a maximum a posteriori (MAP) formulation. Unlike existing schemes that build on MRF optimizers, we inf...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 37(2015), 11 vom: 28. Nov., Seite 2178-92
1. Verfasser: Evangelidis, Georgios D (VerfasserIn)
Weitere Verfasser: Hansard, Miles, Horaud, Radu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM25342531X
003 DE-627
005 20231224170209.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2015.2400465  |2 doi 
028 5 2 |a pubmed24n0844.xml 
035 |a (DE-627)NLM25342531X 
035 |a (NLM)26440260 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Evangelidis, Georgios D  |e verfasserin  |4 aut 
245 1 0 |a Fusion of range and stereo data for high-resolution scene-modeling 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 04.01.2016 
500 |a Date Revised 07.10.2015 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper addresses the problem of range-stereo fusion, for the construction of high-resolution depth maps. In particular, we combine low-resolution depth data with high-resolution stereo data, in a maximum a posteriori (MAP) formulation. Unlike existing schemes that build on MRF optimizers, we infer the disparity map from a series of local energy minimization problems that are solved hierarchically, by growing sparse initial disparities obtained from the depth data. The accuracy of the method is not compromised, owing to three properties of the data-term in the energy function. First, it incorporates a new correlation function that is capable of providing refined correlations and disparities, via subpixel correction. Second, the correlation scores rely on an adaptive cost aggregation step, based on the depth data. Third, the stereo and depth likelihoods are adaptively fused, based on the scene texture and camera geometry. These properties lead to a more selective growing process which, unlike previous seed-growing methods, avoids the tendency to propagate incorrect disparities. The proposed method gives rise to an intrinsically efficient algorithm, which runs at 3FPS on 2.0 MP images on a standard desktop computer. The strong performance of the new method is established both by quantitative comparisons with state-of-the-art methods, and by qualitative comparisons using real depth-stereo data-sets 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Hansard, Miles  |e verfasserin  |4 aut 
700 1 |a Horaud, Radu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 37(2015), 11 vom: 28. Nov., Seite 2178-92  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:37  |g year:2015  |g number:11  |g day:28  |g month:11  |g pages:2178-92 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2015.2400465  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 37  |j 2015  |e 11  |b 28  |c 11  |h 2178-92