MobileFusion : real-time volumetric surface reconstruction and dense tracking on mobile phones

We present the first pipeline for real-time volumetric surface reconstruction and dense 6DoF camera tracking running purely on standard, off-the-shelf mobile phones. Using only the embedded RGB camera, our system allows users to scan objects of varying shape, size, and appearance in seconds, with re...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1998. - 21(2015), 11 vom: 21. Nov., Seite 1251-8
1. Verfasser: Ondrúška, Peter (VerfasserIn)
Weitere Verfasser: Kohli, Pushmeet, Izadi, Shahram
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM253421020
003 DE-627
005 20250219053622.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2015.2459902  |2 doi 
028 5 2 |a pubmed25n0844.xml 
035 |a (DE-627)NLM253421020 
035 |a (NLM)26439826 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ondrúška, Peter  |e verfasserin  |4 aut 
245 1 0 |a MobileFusion  |b real-time volumetric surface reconstruction and dense tracking on mobile phones 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.07.2016 
500 |a Date Revised 16.11.2017 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a We present the first pipeline for real-time volumetric surface reconstruction and dense 6DoF camera tracking running purely on standard, off-the-shelf mobile phones. Using only the embedded RGB camera, our system allows users to scan objects of varying shape, size, and appearance in seconds, with real-time feedback during the capture process. Unlike existing state of the art methods, which produce only point-based 3D models on the phone, or require cloud-based processing, our hybrid GPU/CPU pipeline is unique in that it creates a connected 3D surface model directly on the device at 25Hz. In each frame, we perform dense 6DoF tracking, which continuously registers the RGB input to the incrementally built 3D model, minimizing a noise aware photoconsistency error metric. This is followed by efficient key-frame selection, and dense per-frame stereo matching. These depth maps are fused volumetrically using a method akin to KinectFusion, producing compelling surface models. For each frame, the implicit surface is extracted for live user feedback and pose estimation. We demonstrate scans of a variety of objects, and compare to a Kinect-based baseline, showing on average ∼ 1.5cm error. We qualitatively compare to a state of the art point-based mobile phone method, demonstrating an order of magnitude faster scanning times, and fully connected surface models 
650 4 |a Journal Article 
700 1 |a Kohli, Pushmeet  |e verfasserin  |4 aut 
700 1 |a Izadi, Shahram  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1998  |g 21(2015), 11 vom: 21. Nov., Seite 1251-8  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:21  |g year:2015  |g number:11  |g day:21  |g month:11  |g pages:1251-8 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2015.2459902  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 21  |j 2015  |e 11  |b 21  |c 11  |h 1251-8