Over-expression of an S-domain receptor-like kinase extracellular domain improves panicle architecture and grain yield in rice

© The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 66(2015), 22 vom: 09. Dez., Seite 7197-209
1. Verfasser: Zou, Xiaohua (VerfasserIn)
Weitere Verfasser: Qin, Zhengrui, Zhang, Chunyu, Liu, Bin, Liu, Jun, Zhang, Chengsheng, Lin, Chentao, Li, Hongyu, Zhao, Tao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Panicle architecture S-domain receptor-like kinase. rice Plant Proteins Protein Kinases EC 2.7.-
Beschreibung
Zusammenfassung:© The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
The S-domain receptor kinase (SRK) comprises a highly polymorphic subfamily of receptor-like kinases (RLKs) originally found to be involved in the self-incompatibility response in Brassica. Although several members have been identified to play roles in developmental control and disease responses, the correlation between SRKs and yield components in rice is still unclear. The utility of transgenic expression of a dominant negative form of SRK, OsLSK1 (Large spike S-domain receptor like Kinase 1), is reported here for the improvement of grain yield components in rice. OsLSK1 was highly expressed in nodes of rice and is a plasma membrane protein. The expression of OsLSK1 responded to the exogenous application of growth hormones, to abiotic stresses, and its extracellular domain could form homodimers or heterodimers with other related SRKs. Over-expression of a truncated version of OsLSK1 (including the extracellular and transmembrane domain of OsLSK1 without the intracellular kinase domain) increased plant height and improve yield components, including primary branches per panicle and grains per primary branch, resulting in about a 55.8% increase of the total grain yield per plot (10 plants). Transcriptional analysis indicated that several key genes involved in the GA biosynthetic and signalling pathway were up-regulated in transgenic plants. However, full-length cDNA over-expression and RNAi of OsLSK1 transgenic plants did not exhibit a detectable visual phenotype and possible reasons for this were discussed. These results indicate that OsLSK1 may act redundantly with its homologues to affect yield traits in rice and manipulation of OsLSK1 by the dominant negative method is a practicable strategy to improve grain yield in rice and other crops
Beschreibung:Date Completed 12.10.2016
Date Revised 13.11.2018
published: Print-Electronic
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/erv417