Distributed Signal Decorrelation and Detection in Multi View Camera Networks Using the Vector Sparse Matrix Transform

This paper introduces the vector sparse matrix transform (vector SMT), a new decorrelating transform suitable for performing distributed processing of high-dimensional signals in sensor networks. We assume that each sensor in the network encodes its measurements into vector outputs instead of scalar...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 12 vom: 10. Dez., Seite 6011-24
1. Verfasser: Bachega, Leonardo R (VerfasserIn)
Weitere Verfasser: Hariharan, Srikanth, Bouman, Charles A, Shroff, Ness B
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM253184401
003 DE-627
005 20231224165706.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2015.2481709  |2 doi 
028 5 2 |a pubmed24n0844.xml 
035 |a (DE-627)NLM253184401 
035 |a (NLM)26415179 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bachega, Leonardo R  |e verfasserin  |4 aut 
245 1 0 |a Distributed Signal Decorrelation and Detection in Multi View Camera Networks Using the Vector Sparse Matrix Transform 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.02.2016 
500 |a Date Revised 27.01.2016 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper introduces the vector sparse matrix transform (vector SMT), a new decorrelating transform suitable for performing distributed processing of high-dimensional signals in sensor networks. We assume that each sensor in the network encodes its measurements into vector outputs instead of scalar ones. The proposed transform decorrelates a sequence of pairs of vector outputs, until these vectors are decorrelated. In our experiments, we simulate distributed anomaly detection by a network of cameras, monitoring a spatial region. Each camera records an image of the monitored environment from its particular viewpoint and outputs a vector encoding the image. Our results, with both artificial and real data, show that the proposed vector SMT transform effectively decorrelates image measurements from the multiple cameras in the network while maintaining low overall communication energy consumption. Since it enables joint processing of the multiple vector outputs, our method provides significant improvements to anomaly detection accuracy when compared with the baseline case when the images are processed independently 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Hariharan, Srikanth  |e verfasserin  |4 aut 
700 1 |a Bouman, Charles A  |e verfasserin  |4 aut 
700 1 |a Shroff, Ness B  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 24(2015), 12 vom: 10. Dez., Seite 6011-24  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:24  |g year:2015  |g number:12  |g day:10  |g month:12  |g pages:6011-24 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2015.2481709  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2015  |e 12  |b 10  |c 12  |h 6011-24