Compressed image quality metric based on perceptually weighted distortion

Objective quality assessment for compressed images is critical to various image compression systems that are essential in image delivery and storage. Although the mean squared error (MSE) is computationally simple, it may not be accurate to reflect the perceptual quality of compressed images, which...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 12 vom: 10. Dez., Seite 5594-608
1. Verfasser: Hu, Sudeng (VerfasserIn)
Weitere Verfasser: Jin, Lina, Wang, Hanli, Zhang, Yun, Kwong, Sam, Kuo, C-C Jay
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM253184304
003 DE-627
005 20231224165705.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2015.2481319  |2 doi 
028 5 2 |a pubmed24n0844.xml 
035 |a (DE-627)NLM253184304 
035 |a (NLM)26415170 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hu, Sudeng  |e verfasserin  |4 aut 
245 1 0 |a Compressed image quality metric based on perceptually weighted distortion 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.08.2016 
500 |a Date Revised 27.01.2016 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Objective quality assessment for compressed images is critical to various image compression systems that are essential in image delivery and storage. Although the mean squared error (MSE) is computationally simple, it may not be accurate to reflect the perceptual quality of compressed images, which is also affected dramatically by the characteristics of human visual system (HVS), such as masking effect. In this paper, an image quality metric (IQM) is proposed based on perceptually weighted distortion in terms of the MSE. To capture the characteristics of HVS, a randomness map is proposed to measure the masking effect and a preprocessing scheme is proposed to simulate the processing that occurs in the initial part of HVS. Since the masking effect highly depends on the structural randomness, the prediction error from neighborhood with a statistical model is used to measure the significance of masking. Meanwhile, the imperceptible signal with high frequency could be removed by preprocessing with low-pass filters. The relation is investigated between the distortions before and after masking effect, and a masking modulation model is proposed to simulate the masking effect after preprocessing. The performance of the proposed IQM is validated on six image databases with various compression distortions. The experimental results show that the proposed algorithm outperforms other benchmark IQMs 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Jin, Lina  |e verfasserin  |4 aut 
700 1 |a Wang, Hanli  |e verfasserin  |4 aut 
700 1 |a Zhang, Yun  |e verfasserin  |4 aut 
700 1 |a Kwong, Sam  |e verfasserin  |4 aut 
700 1 |a Kuo, C-C Jay  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 24(2015), 12 vom: 10. Dez., Seite 5594-608  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:24  |g year:2015  |g number:12  |g day:10  |g month:12  |g pages:5594-608 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2015.2481319  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2015  |e 12  |b 10  |c 12  |h 5594-608