DASH-N : Joint Hierarchical Domain Adaptation and Feature Learning

Complex visual data contain discriminative structures that are difficult to be fully captured by any single feature descriptor. While recent work on domain adaptation focuses on adapting a single hand-crafted feature, it is important to perform adaptation of a hierarchy of features to exploit the ri...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 12 vom: 10. Dez., Seite 5479-91
1. Verfasser: Nguyen, Hien V (VerfasserIn)
Weitere Verfasser: Ho, Huy Tho, Patel, Vishal M, Chellappa, Rama
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM253184266
003 DE-627
005 20250219050405.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2015.2479405  |2 doi 
028 5 2 |a pubmed25n0843.xml 
035 |a (DE-627)NLM253184266 
035 |a (NLM)26415168 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Nguyen, Hien V  |e verfasserin  |4 aut 
245 1 0 |a DASH-N  |b Joint Hierarchical Domain Adaptation and Feature Learning 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.02.2016 
500 |a Date Revised 27.01.2016 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Complex visual data contain discriminative structures that are difficult to be fully captured by any single feature descriptor. While recent work on domain adaptation focuses on adapting a single hand-crafted feature, it is important to perform adaptation of a hierarchy of features to exploit the richness of visual data. We propose a novel framework for domain adaptation using a sparse and hierarchical network (DASH-N). Our method jointly learns a hierarchy of features together with transformations that rectify the mismatch between different domains. The building block of DASH-N is the latent sparse representation. It employs a dimensionality reduction step that can prevent the data dimension from increasing too fast as one traverses deeper into the hierarchy. The experimental results show that our method compares favorably with the competing state-of-the-art methods. In addition, it is shown that a multi-layer DASH-N performs better than a single-layer DASH-N 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Ho, Huy Tho  |e verfasserin  |4 aut 
700 1 |a Patel, Vishal M  |e verfasserin  |4 aut 
700 1 |a Chellappa, Rama  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 24(2015), 12 vom: 10. Dez., Seite 5479-91  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:24  |g year:2015  |g number:12  |g day:10  |g month:12  |g pages:5479-91 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2015.2479405  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2015  |e 12  |b 10  |c 12  |h 5479-91