Substantial Difference in Ordering of 10, 15, and 20 nm Iron Oxide Nanoparticles on a Water Surface : In Situ Characterization by the Grazing Incidence X-ray Scattering

In the present study, for the first time, a unique combination of in situ grazing incidence small-angle X-ray scattering and X-ray reflectivity, accompanied by the pressure-area isotherm analysis, Brewster angle microscopy, and ex situ scanning electron microscopy, was applied for investigation of t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 31(2015), 42 vom: 27. Okt., Seite 11639-48
1. Verfasser: Vorobiev, A (VerfasserIn)
Weitere Verfasser: Khassanov, A, Ukleev, V, Snigireva, I, Konovalov, O
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:In the present study, for the first time, a unique combination of in situ grazing incidence small-angle X-ray scattering and X-ray reflectivity, accompanied by the pressure-area isotherm analysis, Brewster angle microscopy, and ex situ scanning electron microscopy, was applied for investigation of two-dimensional superlattices of magnetic nanoparticles as they form on a water surface in a Langmuir trough. Iron oxide particles of different sizes stabilized with a single layer of oleic acid were used. It is demonstrated that monodisperse 10 nm particles on a water surface reproducibly form identical highly ordered monolayers in a wide range of experimental conditions, while monodisperse 20 nm particles always form compact three-dimensional clusters and never the monolayers. Monodisperse particles of an intermediate size, 15 nm in diameter, build a metastable monolayer, which shows a tendency for spontaneous transformation to bi-, tri-, and multilayer islands. The importance to use both grazing incidence small-angle X-ray scattering and X-ray reflectivity together with the complementary techniques, to avoid misinterpretation of separate experimental data sets, is underlined
Beschreibung:Date Completed 14.03.2016
Date Revised 27.10.2015
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.5b02644