Duration of emission of volatile organic compounds from mechanically damaged plant leaves

Published by Elsevier GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Journal of plant physiology. - 1979. - 188(2015) vom: 01. Sept., Seite 19-28
1. Verfasser: Smith, Lincoln (VerfasserIn)
Weitere Verfasser: Beck, John J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:Journal of plant physiology
Schlagworte:Journal Article Biological control Host plant specificity Mechanical damage Sesquiterpene Volatile organic compounds Volatile Organic Compounds
Beschreibung
Zusammenfassung:Published by Elsevier GmbH.
Classical biological control of invasive alien weeds depends on the use of arthropod herbivores that are sufficiently host specific to avoid risk of injuring nontarget plants. Host plant specificity is usually evaluated by using a combination of behavioral and developmental experiments under choice, no-choice and field conditions. Secondary plant compounds are likely to have an important influence on host plant specificity. However, relatively little is known about the volatile organic compounds (VOCs) that are emitted by target and nontarget plants, and how environmental conditions may affect their emission. Previous studies have shown that mechanical damage of leaves increases the composition and content of VOCs emitted. In this study we measured the VOC emissions of five species of plants in the subtribe Centaureinae (Asteraceae)--Carthamus tinctorius, Centaurea cineraria, Centaurea melitensis, Centaurea rothrockii, and Centaurea solstitialis--that have previously been used in host specificity experiments for a prospective biological control agent of yellow starthistle (C. solstitialis). Leaves of each plant were punctured with a needle and the VOCs were collected by solid-phase microextraction (SPME) periodically over 48 h and analyzed by GC-MS. A total of 49 compounds were detected. Damage caused an immediate increase of 200-600% in the composition of VOCs emitted from each plant species, and the amounts generally remained high for at least 48 h. The results indicate that a very unspecific mechanical damage can cause a prolonged change in the VOC profile of plants
Beschreibung:Date Completed 08.08.2016
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1618-1328
DOI:10.1016/j.jplph.2015.08.003