|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM252955110 |
003 |
DE-627 |
005 |
20231224165215.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2016 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1111/gcb.13102
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0843.xml
|
035 |
|
|
|a (DE-627)NLM252955110
|
035 |
|
|
|a (NLM)26391334
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Voelker, Steven L
|e verfasserin
|4 aut
|
245 |
1 |
2 |
|a A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2
|b evidence from carbon isotope discrimination in paleo and CO2 enrichment studies
|
264 |
|
1 |
|c 2016
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 19.10.2016
|
500 |
|
|
|a Date Revised 16.11.2017
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2015 John Wiley & Sons Ltd.
|
520 |
|
|
|a Rising atmospheric [CO2 ], ca , is expected to affect stomatal regulation of leaf gas-exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water, and nutrient cycling of forests. Researchers have proposed various strategies for stomatal regulation of leaf gas-exchange that include maintaining a constant leaf internal [CO2 ], ci , a constant drawdown in CO2 (ca - ci ), and a constant ci /ca . These strategies can result in drastically different consequences for leaf gas-exchange. The accuracy of Earth systems models depends in part on assumptions about generalizable patterns in leaf gas-exchange responses to varying ca . The concept of optimal stomatal behavior, exemplified by woody plants shifting along a continuum of these strategies, provides a unifying framework for understanding leaf gas-exchange responses to ca . To assess leaf gas-exchange regulation strategies, we analyzed patterns in ci inferred from studies reporting C stable isotope ratios (δ(13) C) or photosynthetic discrimination (∆) in woody angiosperms and gymnosperms that grew across a range of ca spanning at least 100 ppm. Our results suggest that much of the ca -induced changes in ci /ca occurred across ca spanning 200 to 400 ppm. These patterns imply that ca - ci will eventually approach a constant level at high ca because assimilation rates will reach a maximum and stomatal conductance of each species should be constrained to some minimum level. These analyses are not consistent with canalization toward any single strategy, particularly maintaining a constant ci . Rather, the results are consistent with the existence of a broadly conserved pattern of stomatal optimization in woody angiosperms and gymnosperms. This results in trees being profligate water users at low ca , when additional water loss is small for each unit of C gain, and increasingly water-conservative at high ca , when photosystems are saturated and water loss is large for each unit C gain
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a Research Support, U.S. Gov't, Non-P.H.S.
|
650 |
|
4 |
|a angiosperm
|
650 |
|
4 |
|a carbon dioxide
|
650 |
|
4 |
|a free-air CO2 enrichment
|
650 |
|
4 |
|a gymnosperm
|
650 |
|
4 |
|a optimal stomatal behavior
|
650 |
|
4 |
|a photosynthesis
|
650 |
|
4 |
|a stomatal conductance
|
650 |
|
4 |
|a water use efficiency
|
650 |
|
7 |
|a Carbon Isotopes
|2 NLM
|
650 |
|
7 |
|a Carbon Dioxide
|2 NLM
|
650 |
|
7 |
|a 142M471B3J
|2 NLM
|
700 |
1 |
|
|a Brooks, J Renée
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Meinzer, Frederick C
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Anderson, Rebecca
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Bader, Martin K-F
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Battipaglia, Giovanna
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Becklin, Katie M
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Beerling, David
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Bert, Didier
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Betancourt, Julio L
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Dawson, Todd E
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Domec, Jean-Christophe
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Guyette, Richard P
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Körner, Christian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Leavitt, Steven W
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Linder, Sune
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Marshall, John D
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Mildner, Manuel
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ogée, Jérôme
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Panyushkina, Irina
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Plumpton, Heather J
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Pregitzer, Kurt S
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Saurer, Matthias
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Smith, Andrew R
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Siegwolf, Rolf T W
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Stambaugh, Michael C
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Talhelm, Alan F
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tardif, Jacques C
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Van de Water, Peter K
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ward, Joy K
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wingate, Lisa
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Global change biology
|d 1999
|g 22(2016), 2 vom: 14. Feb., Seite 889-902
|w (DE-627)NLM098239996
|x 1365-2486
|7 nnns
|
773 |
1 |
8 |
|g volume:22
|g year:2016
|g number:2
|g day:14
|g month:02
|g pages:889-902
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1111/gcb.13102
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 22
|j 2016
|e 2
|b 14
|c 02
|h 889-902
|