LEADER 01000naa a22002652 4500
001 NLM252955110
003 DE-627
005 20231224165215.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.13102  |2 doi 
028 5 2 |a pubmed24n0843.xml 
035 |a (DE-627)NLM252955110 
035 |a (NLM)26391334 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Voelker, Steven L  |e verfasserin  |4 aut 
245 1 2 |a A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2  |b evidence from carbon isotope discrimination in paleo and CO2 enrichment studies 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 19.10.2016 
500 |a Date Revised 16.11.2017 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2015 John Wiley & Sons Ltd. 
520 |a Rising atmospheric [CO2 ], ca , is expected to affect stomatal regulation of leaf gas-exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water, and nutrient cycling of forests. Researchers have proposed various strategies for stomatal regulation of leaf gas-exchange that include maintaining a constant leaf internal [CO2 ], ci , a constant drawdown in CO2 (ca  - ci ), and a constant ci /ca . These strategies can result in drastically different consequences for leaf gas-exchange. The accuracy of Earth systems models depends in part on assumptions about generalizable patterns in leaf gas-exchange responses to varying ca . The concept of optimal stomatal behavior, exemplified by woody plants shifting along a continuum of these strategies, provides a unifying framework for understanding leaf gas-exchange responses to ca . To assess leaf gas-exchange regulation strategies, we analyzed patterns in ci inferred from studies reporting C stable isotope ratios (δ(13) C) or photosynthetic discrimination (∆) in woody angiosperms and gymnosperms that grew across a range of ca spanning at least 100 ppm. Our results suggest that much of the ca -induced changes in ci /ca occurred across ca spanning 200 to 400 ppm. These patterns imply that ca  - ci will eventually approach a constant level at high ca because assimilation rates will reach a maximum and stomatal conductance of each species should be constrained to some minimum level. These analyses are not consistent with canalization toward any single strategy, particularly maintaining a constant ci . Rather, the results are consistent with the existence of a broadly conserved pattern of stomatal optimization in woody angiosperms and gymnosperms. This results in trees being profligate water users at low ca , when additional water loss is small for each unit of C gain, and increasingly water-conservative at high ca , when photosystems are saturated and water loss is large for each unit C gain 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 4 |a angiosperm 
650 4 |a carbon dioxide 
650 4 |a free-air CO2 enrichment 
650 4 |a gymnosperm 
650 4 |a optimal stomatal behavior 
650 4 |a photosynthesis 
650 4 |a stomatal conductance 
650 4 |a water use efficiency 
650 7 |a Carbon Isotopes  |2 NLM 
650 7 |a Carbon Dioxide  |2 NLM 
650 7 |a 142M471B3J  |2 NLM 
700 1 |a Brooks, J Renée  |e verfasserin  |4 aut 
700 1 |a Meinzer, Frederick C  |e verfasserin  |4 aut 
700 1 |a Anderson, Rebecca  |e verfasserin  |4 aut 
700 1 |a Bader, Martin K-F  |e verfasserin  |4 aut 
700 1 |a Battipaglia, Giovanna  |e verfasserin  |4 aut 
700 1 |a Becklin, Katie M  |e verfasserin  |4 aut 
700 1 |a Beerling, David  |e verfasserin  |4 aut 
700 1 |a Bert, Didier  |e verfasserin  |4 aut 
700 1 |a Betancourt, Julio L  |e verfasserin  |4 aut 
700 1 |a Dawson, Todd E  |e verfasserin  |4 aut 
700 1 |a Domec, Jean-Christophe  |e verfasserin  |4 aut 
700 1 |a Guyette, Richard P  |e verfasserin  |4 aut 
700 1 |a Körner, Christian  |e verfasserin  |4 aut 
700 1 |a Leavitt, Steven W  |e verfasserin  |4 aut 
700 1 |a Linder, Sune  |e verfasserin  |4 aut 
700 1 |a Marshall, John D  |e verfasserin  |4 aut 
700 1 |a Mildner, Manuel  |e verfasserin  |4 aut 
700 1 |a Ogée, Jérôme  |e verfasserin  |4 aut 
700 1 |a Panyushkina, Irina  |e verfasserin  |4 aut 
700 1 |a Plumpton, Heather J  |e verfasserin  |4 aut 
700 1 |a Pregitzer, Kurt S  |e verfasserin  |4 aut 
700 1 |a Saurer, Matthias  |e verfasserin  |4 aut 
700 1 |a Smith, Andrew R  |e verfasserin  |4 aut 
700 1 |a Siegwolf, Rolf T W  |e verfasserin  |4 aut 
700 1 |a Stambaugh, Michael C  |e verfasserin  |4 aut 
700 1 |a Talhelm, Alan F  |e verfasserin  |4 aut 
700 1 |a Tardif, Jacques C  |e verfasserin  |4 aut 
700 1 |a Van de Water, Peter K  |e verfasserin  |4 aut 
700 1 |a Ward, Joy K  |e verfasserin  |4 aut 
700 1 |a Wingate, Lisa  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 22(2016), 2 vom: 14. Feb., Seite 889-902  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:22  |g year:2016  |g number:2  |g day:14  |g month:02  |g pages:889-902 
856 4 0 |u http://dx.doi.org/10.1111/gcb.13102  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 22  |j 2016  |e 2  |b 14  |c 02  |h 889-902