Multi-field Pattern Matching based on Sparse Feature Sampling

We present an approach to pattern matching in 3D multi-field scalar data. Existing pattern matching algorithms work on single scalar or vector fields only, yet many numerical simulations output multi-field data where only a joint analysis of multiple fields describes the underlying phenomenon fully....

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 22(2016), 1 vom: 18. Jan., Seite 807-16
1. Verfasser: Wang, Zhongjie (VerfasserIn)
Weitere Verfasser: Seidel, Hans-Peter, Weinkauf, Tino
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM252946790
003 DE-627
005 20231224165204.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2015.2467292  |2 doi 
028 5 2 |a pubmed24n0843.xml 
035 |a (DE-627)NLM252946790 
035 |a (NLM)26390479 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Zhongjie  |e verfasserin  |4 aut 
245 1 0 |a Multi-field Pattern Matching based on Sparse Feature Sampling 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 05.02.2016 
500 |a Date Revised 04.11.2015 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We present an approach to pattern matching in 3D multi-field scalar data. Existing pattern matching algorithms work on single scalar or vector fields only, yet many numerical simulations output multi-field data where only a joint analysis of multiple fields describes the underlying phenomenon fully. Our method takes this into account by bundling information from multiple fields into the description of a pattern. First, we extract a sparse set of features for each 3D scalar field using the 3D SIFT algorithm (Scale-Invariant Feature Transform). This allows for a memory-saving description of prominent features in the data with invariance to translation, rotation, and scaling. Second, the user defines a pattern as a set of SIFT features in multiple fields by e.g. brushing a region of interest. Third, we locate and rank matching patterns in the entire data set. Experiments show that our algorithm is efficient in terms of required memory and computational efforts 
650 4 |a Journal Article 
700 1 |a Seidel, Hans-Peter  |e verfasserin  |4 aut 
700 1 |a Weinkauf, Tino  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 22(2016), 1 vom: 18. Jan., Seite 807-16  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:22  |g year:2016  |g number:1  |g day:18  |g month:01  |g pages:807-16 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2015.2467292  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 22  |j 2016  |e 1  |b 18  |c 01  |h 807-16