|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM252946790 |
003 |
DE-627 |
005 |
20231224165204.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2016 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TVCG.2015.2467292
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0843.xml
|
035 |
|
|
|a (DE-627)NLM252946790
|
035 |
|
|
|a (NLM)26390479
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wang, Zhongjie
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Multi-field Pattern Matching based on Sparse Feature Sampling
|
264 |
|
1 |
|c 2016
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 05.02.2016
|
500 |
|
|
|a Date Revised 04.11.2015
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a We present an approach to pattern matching in 3D multi-field scalar data. Existing pattern matching algorithms work on single scalar or vector fields only, yet many numerical simulations output multi-field data where only a joint analysis of multiple fields describes the underlying phenomenon fully. Our method takes this into account by bundling information from multiple fields into the description of a pattern. First, we extract a sparse set of features for each 3D scalar field using the 3D SIFT algorithm (Scale-Invariant Feature Transform). This allows for a memory-saving description of prominent features in the data with invariance to translation, rotation, and scaling. Second, the user defines a pattern as a set of SIFT features in multiple fields by e.g. brushing a region of interest. Third, we locate and rank matching patterns in the entire data set. Experiments show that our algorithm is efficient in terms of required memory and computational efforts
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Seidel, Hans-Peter
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Weinkauf, Tino
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on visualization and computer graphics
|d 1996
|g 22(2016), 1 vom: 18. Jan., Seite 807-16
|w (DE-627)NLM098269445
|x 1941-0506
|7 nnns
|
773 |
1 |
8 |
|g volume:22
|g year:2016
|g number:1
|g day:18
|g month:01
|g pages:807-16
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TVCG.2015.2467292
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 22
|j 2016
|e 1
|b 18
|c 01
|h 807-16
|