Visual Tracking Based on the Adaptive Color Attention Tuned Sparse Generative Object Model

This paper presents a new visual tracking framework based on an adaptive color attention tuned local sparse model. The histograms of sparse coefficients of all patches in an object are pooled together according to their spatial distribution. A particle filter methodology is used as the location mode...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 12 vom: 18. Dez., Seite 5236-48
1. Verfasser: Tian, Chunna (VerfasserIn)
Weitere Verfasser: Gao, Xinbo, Wei, Wei, Zheng, Hong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM25294660X
003 DE-627
005 20231224165204.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2015.2479409  |2 doi 
028 5 2 |a pubmed24n0843.xml 
035 |a (DE-627)NLM25294660X 
035 |a (NLM)26390460 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tian, Chunna  |e verfasserin  |4 aut 
245 1 0 |a Visual Tracking Based on the Adaptive Color Attention Tuned Sparse Generative Object Model 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.02.2016 
500 |a Date Revised 27.01.2016 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper presents a new visual tracking framework based on an adaptive color attention tuned local sparse model. The histograms of sparse coefficients of all patches in an object are pooled together according to their spatial distribution. A particle filter methodology is used as the location model to predict candidates for object verification during tracking. Since color is an important visual clue to distinguish objects from background, we calculate the color similarity between objects in the previous frames and the candidates in current frame, which is adopted as color attention to tune the local sparse representation-based appearance similarity measurement between the object template and candidates. The color similarity can be calculated efficiently with hash coded color names, which helps the tracker find more reliable objects during tracking. We use a flexible local sparse coding of the object to evaluate the degeneration degree of the appearance model, based on which we build a model updating mechanism to alleviate drifting caused by temporal varying multi-factors. Experiments on 76 challenging benchmark color sequences and the evaluation under the object tracking benchmark protocol demonstrate the superiority of the proposed tracker over the state-of-the-art methods in accuracy 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Gao, Xinbo  |e verfasserin  |4 aut 
700 1 |a Wei, Wei  |e verfasserin  |4 aut 
700 1 |a Zheng, Hong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 24(2015), 12 vom: 18. Dez., Seite 5236-48  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:24  |g year:2015  |g number:12  |g day:18  |g month:12  |g pages:5236-48 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2015.2479409  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2015  |e 12  |b 18  |c 12  |h 5236-48