Frame Field Singularity Correction for Automatic Hexahedralization

We present an automatic hexahedralization tool, based on a systematic treatment that removes some of the singularities that would lead to degenerate volumetric parameterization. Such singularities could be abundant in automatically generated frame fields guiding the interior and boundary layouts of...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 20(2014), 8 vom: 10. Aug., Seite 1189-99
1. Verfasser: Jiang, Tengfei (VerfasserIn)
Weitere Verfasser: Huang, Jin, Wang, Yuanzhen, Tong, Yiying, Bao, Hujun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM252631110
003 DE-627
005 20250219031404.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2013.250  |2 doi 
028 5 2 |a pubmed25n0842.xml 
035 |a (DE-627)NLM252631110 
035 |a (NLM)26357370 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jiang, Tengfei  |e verfasserin  |4 aut 
245 1 0 |a Frame Field Singularity Correction for Automatic Hexahedralization 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.11.2015 
500 |a Date Revised 11.09.2015 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We present an automatic hexahedralization tool, based on a systematic treatment that removes some of the singularities that would lead to degenerate volumetric parameterization. Such singularities could be abundant in automatically generated frame fields guiding the interior and boundary layouts of the hexahedra in an all hexahedral mesh. We first give the mathematical definitions of the inadmissible singularities prevalent in frame fields, including newly introduced surface singularity types. We then give a practical framework for adjusting singularity graphs by automatically modifying the rotational transition of frames between charts (cells of a tetrahedral mesh for the volume) to resolve the issues detected in the internal and boundary singularity graph. After applying an additional re-smoothing of the frame field with the modified transition conditions, we cut the volume into a topologically trivial domain, with the original topology encoded by the self-intersections of the boundary of the domain, and solve a mixed integer problem on this domain for a global parameterization. Finally, a properly connected hexahedral mesh is constructed from the integer isosurfaces of (u,v,w) in the parameterization. We demonstrate the applicability of the method on complex shapes, and discuss its limitations 
650 4 |a Journal Article 
700 1 |a Huang, Jin  |e verfasserin  |4 aut 
700 1 |a Wang, Yuanzhen  |e verfasserin  |4 aut 
700 1 |a Tong, Yiying  |e verfasserin  |4 aut 
700 1 |a Bao, Hujun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 20(2014), 8 vom: 10. Aug., Seite 1189-99  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnas 
773 1 8 |g volume:20  |g year:2014  |g number:8  |g day:10  |g month:08  |g pages:1189-99 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2013.250  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 20  |j 2014  |e 8  |b 10  |c 08  |h 1189-99