From Pixels to Response Maps : Discriminative Image Filtering for Face Alignment in the Wild

We propose a face alignment framework that relies on the texture model generated by the responses of discriminatively trained part-based filters. Unlike standard texture models built from pixel intensities or responses generated by generic filters (e.g. Gabor), our framework has two important advant...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 37(2015), 6 vom: 10. Juni, Seite 1312-20
1. Verfasser: Asthana, Akshay (VerfasserIn)
Weitere Verfasser: Zafeiriou, Stefanos, Tzimiropoulos, Georgios, Cheng, Shiyang, Pantic, Maja
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM252630939
003 DE-627
005 20231224164522.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2014.2362142  |2 doi 
028 5 2 |a pubmed24n0842.xml 
035 |a (DE-627)NLM252630939 
035 |a (NLM)26357352 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Asthana, Akshay  |e verfasserin  |4 aut 
245 1 0 |a From Pixels to Response Maps  |b Discriminative Image Filtering for Face Alignment in the Wild 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 08.06.2016 
500 |a Date Revised 11.09.2015 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a We propose a face alignment framework that relies on the texture model generated by the responses of discriminatively trained part-based filters. Unlike standard texture models built from pixel intensities or responses generated by generic filters (e.g. Gabor), our framework has two important advantages. First, by virtue of discriminative training, invariance to external variations (like identity, pose, illumination and expression) is achieved. Second, we show that the responses generated by discriminatively trained filters (or patch-experts) are sparse and can be modeled using a very small number of parameters. As a result, the optimization methods based on the proposed texture model can better cope with unseen variations. We illustrate this point by formulating both part-based and holistic approaches for generic face alignment and show that our framework outperforms the state-of-the-art on multiple "wild" databases. The code and dataset annotations are available for research purposes from http://ibug.doc.ic.ac.uk/resources 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Zafeiriou, Stefanos  |e verfasserin  |4 aut 
700 1 |a Tzimiropoulos, Georgios  |e verfasserin  |4 aut 
700 1 |a Cheng, Shiyang  |e verfasserin  |4 aut 
700 1 |a Pantic, Maja  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 37(2015), 6 vom: 10. Juni, Seite 1312-20  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:37  |g year:2015  |g number:6  |g day:10  |g month:06  |g pages:1312-20 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2014.2362142  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 37  |j 2015  |e 6  |b 10  |c 06  |h 1312-20