Surface Meshing with Curvature Convergence

Surface meshing plays a fundamental role in graphics and visualization. Many geometric processing tasks involve solving geometric PDEs on meshes. The numerical stability, convergence rates and approximation errors are largely determined by the mesh qualities. In practice, Delaunay refinement algorit...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 20(2014), 6 vom: 10. Juni, Seite 919-34
1. Verfasser: Huibin Li (VerfasserIn)
Weitere Verfasser: Wei Zeng, Morvan, Jean Marie, Liming Chen, Gu, Xianfeng David
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM252630491
003 DE-627
005 20231224164522.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2013.253  |2 doi 
028 5 2 |a pubmed24n0842.xml 
035 |a (DE-627)NLM252630491 
035 |a (NLM)26357308 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Huibin Li  |e verfasserin  |4 aut 
245 1 0 |a Surface Meshing with Curvature Convergence 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 02.12.2015 
500 |a Date Revised 11.09.2015 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Surface meshing plays a fundamental role in graphics and visualization. Many geometric processing tasks involve solving geometric PDEs on meshes. The numerical stability, convergence rates and approximation errors are largely determined by the mesh qualities. In practice, Delaunay refinement algorithms offer satisfactory solutions to high quality mesh generations. The theoretical proofs for volume based and surface based Delaunay refinement algorithms have been established, but those for conformal parameterization based ones remain wide open. This work focuses on the curvature measure convergence for the conformal parameterization based Delaunay refinement algorithms. Given a metric surface, the proposed approach triangulates its conformal uniformization domain by the planar Delaunay refinement algorithms, and produces a high quality mesh. We give explicit estimates for the Hausdorff distance, the normal deviation, and the differences in curvature measures between the surface and the mesh. In contrast to the conventional results based on volumetric Delaunay refinement, our stronger estimates are independent of the mesh structure and directly guarantee the convergence of curvature measures. Meanwhile, our result on Gaussian curvature measure is intrinsic to the Riemannian metric and independent of the embedding. In practice, our meshing algorithm is much easier to implement and much more efficient. The experimental results verified our theoretical results and demonstrated the efficiency of the meshing algorithm 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Wei Zeng  |e verfasserin  |4 aut 
700 1 |a Morvan, Jean Marie  |e verfasserin  |4 aut 
700 1 |a Liming Chen  |e verfasserin  |4 aut 
700 1 |a Gu, Xianfeng David  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 20(2014), 6 vom: 10. Juni, Seite 919-34  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:20  |g year:2014  |g number:6  |g day:10  |g month:06  |g pages:919-34 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2013.253  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 20  |j 2014  |e 6  |b 10  |c 06  |h 919-34