Glyph-Based Video Visualization for Semen Analysis

The existing efforts in computer assisted semen analysis have been focused on high speed imaging and automated image analysis of sperm motility. This results in a large amount of data, and it is extremely challenging for both clinical scientists and researchers to interpret, compare and correlate th...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 21(2015), 8 vom: 10. Aug., Seite 980-93
1. Verfasser: Duffy, Brian (VerfasserIn)
Weitere Verfasser: Thiyagalingam, Jeyarajan, Walton, Simon, Smith, David J, Trefethen, Anne, Kirkman-Brown, Jackson C, Gaffney, Eamonn A, Min Chen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:The existing efforts in computer assisted semen analysis have been focused on high speed imaging and automated image analysis of sperm motility. This results in a large amount of data, and it is extremely challenging for both clinical scientists and researchers to interpret, compare and correlate the multidimensional and time-varying measurements captured from video data. In this work, we use glyphs to encode a collection of numerical measurements taken at a regular interval and to summarize spatio-temporal motion characteristics using static visual representations. The design of the glyphs addresses the needs for (a) encoding some 20 variables using separable visual channels, (b) supporting scientific observation of the interrelationships between different measurements and comparison between different sperm cells and their flagella, and (c) facilitating the learning of the encoding scheme by making use of appropriate visual abstractions and metaphors. As a case study, we focus this work on video visualization for computer-aided semen analysis, which has a broad impact on both biological sciences and medical healthcare. We demonstrate that glyph-based visualization can serve as a means of external memorization of video data as well as an overview of a large set of spatiotemporal measurements. It enables domain scientists to make scientific observation in a cost-effective manner by reducing the burden of viewing videos repeatedly, while providing them with a new visual representation for conveying semen statistics
Beschreibung:Date Completed 07.06.2016
Date Revised 29.01.2022
published: Print
Citation Status MEDLINE
ISSN:1941-0506
DOI:10.1109/TVCG.2013.265