|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM252629981 |
003 |
DE-627 |
005 |
20231224164521.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2015 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TVCG.2015.2407398
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0842.xml
|
035 |
|
|
|a (DE-627)NLM252629981
|
035 |
|
|
|a (NLM)26357257
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Tze-Yiu Ho
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a All-Frequency Direct Illumination with Vectorized Visibility
|
264 |
|
1 |
|c 2015
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 30.11.2015
|
500 |
|
|
|a Date Revised 11.09.2015
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Many existing pre-computed radiance transfer (PRT) approaches for all-frequency lighting store the information of a 3D object in the pre-vertex manner. To preserve the fidelity of high frequency effects, the 3D object must be tessellated densely. Otherwise, rendering artifacts due to interpolation may appear. This paper presents an all-frequency lighting algorithm for direct illumination based on a new visibility representation which approximates a visibility function using a sequence of 3D vectors. The algorithm is able to construct the visibility function of an on-screen pixel on-the-fly. Hence even though the 3D object is not tessellated densely, the rendering artifacts can be suppressed greatly. Besides, a summed area table based rendering algorithm, which is able to handle the integration over a non-axis aligned polygon, is developed. Using our approach, we can rotate lighting environment, change view point, and adjust the shininess of the 3D object in a real-time manner. Experimental results show that our approach can render plausible all-frequency lighting effects for direct illumination in real-time, especially for specular shadows, which are difficult for other methods to obtain
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
700 |
1 |
|
|a Yi Xiao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Rui-Bin Feng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chi-Sing Leung
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tien-Tsin Wong
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on visualization and computer graphics
|d 1996
|g 21(2015), 8 vom: 10. Aug., Seite 945-58
|w (DE-627)NLM098269445
|x 1941-0506
|7 nnns
|
773 |
1 |
8 |
|g volume:21
|g year:2015
|g number:8
|g day:10
|g month:08
|g pages:945-58
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TVCG.2015.2407398
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 21
|j 2015
|e 8
|b 10
|c 08
|h 945-58
|