Scalable Parallel Distance Field Construction for Large-Scale Applications

Computing distance fields is fundamental to many scientific and engineering applications. Distance fields can be used to direct analysis and reduce data. In this paper, we present a highly scalable method for computing 3D distance fields on massively parallel distributed-memory machines. A new distr...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 21(2015), 10 vom: 10. Okt., Seite 1187-200
1. Verfasser: Yu, Hongfeng (VerfasserIn)
Weitere Verfasser: Xie, Jinrong, Ma, Kwan-Liu, Kolla, Hemanth, Chen, Jacqueline H
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM252629922
003 DE-627
005 20231224164521.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2015.2417572  |2 doi 
028 5 2 |a pubmed24n0842.xml 
035 |a (DE-627)NLM252629922 
035 |a (NLM)26357251 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yu, Hongfeng  |e verfasserin  |4 aut 
245 1 0 |a Scalable Parallel Distance Field Construction for Large-Scale Applications 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 17.11.2015 
500 |a Date Revised 11.09.2015 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Computing distance fields is fundamental to many scientific and engineering applications. Distance fields can be used to direct analysis and reduce data. In this paper, we present a highly scalable method for computing 3D distance fields on massively parallel distributed-memory machines. A new distributed spatial data structure, named parallel distance tree, is introduced to manage the level sets of data and facilitate surface tracking over time, resulting in significantly reduced computation and communication costs for calculating the distance to the surface of interest from any spatial locations. Our method supports several data types and distance metrics from real-world applications. We demonstrate its efficiency and scalability on state-of-the-art supercomputers using both large-scale volume datasets and surface models. We also demonstrate in-situ distance field computation on dynamic turbulent flame surfaces for a petascale combustion simulation. Our work greatly extends the usability of distance fields for demanding applications 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Xie, Jinrong  |e verfasserin  |4 aut 
700 1 |a Ma, Kwan-Liu  |e verfasserin  |4 aut 
700 1 |a Kolla, Hemanth  |e verfasserin  |4 aut 
700 1 |a Chen, Jacqueline H  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 21(2015), 10 vom: 10. Okt., Seite 1187-200  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:21  |g year:2015  |g number:10  |g day:10  |g month:10  |g pages:1187-200 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2015.2417572  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 21  |j 2015  |e 10  |b 10  |c 10  |h 1187-200