Human Motion Capture Data Tailored Transform Coding

Human motion capture (mocap) is a widely used technique for digitalizing human movements. With growing usage, compressing mocap data has received increasing attention, since compact data size enables efficient storage and transmission. Our analysis shows that mocap data have some unique characterist...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 21(2015), 7 vom: 10. Juli, Seite 848-59
1. Verfasser: Junhui Hou (VerfasserIn)
Weitere Verfasser: Lap-Pui Chau, Magnenat-Thalmann, Nadia, Ying He
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM252629876
003 DE-627
005 20231224164521.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2015.2403328  |2 doi 
028 5 2 |a pubmed24n0842.xml 
035 |a (DE-627)NLM252629876 
035 |a (NLM)26357246 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Junhui Hou  |e verfasserin  |4 aut 
245 1 0 |a Human Motion Capture Data Tailored Transform Coding 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 08.06.2016 
500 |a Date Revised 11.09.2015 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Human motion capture (mocap) is a widely used technique for digitalizing human movements. With growing usage, compressing mocap data has received increasing attention, since compact data size enables efficient storage and transmission. Our analysis shows that mocap data have some unique characteristics that distinguish themselves from images and videos. Therefore, directly borrowing image or video compression techniques, such as discrete cosine transform, does not work well. In this paper, we propose a novel mocap-tailored transform coding algorithm that takes advantage of these features. Our algorithm segments the input mocap sequences into clips, which are represented in 2D matrices. Then it computes a set of data-dependent orthogonal bases to transform the matrices to frequency domain, in which the transform coefficients have significantly less dependency. Finally, the compression is obtained by entropy coding of the quantized coefficients and the bases. Our method has low computational cost and can be easily extended to compress mocap databases. It also requires neither training nor complicated parameter setting. Experimental results demonstrate that the proposed scheme significantly outperforms state-of-the-art algorithms in terms of compression performance and speed 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Lap-Pui Chau  |e verfasserin  |4 aut 
700 1 |a Magnenat-Thalmann, Nadia  |e verfasserin  |4 aut 
700 1 |a Ying He  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 21(2015), 7 vom: 10. Juli, Seite 848-59  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:21  |g year:2015  |g number:7  |g day:10  |g month:07  |g pages:848-59 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2015.2403328  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 21  |j 2015  |e 7  |b 10  |c 07  |h 848-59