An Approach to Supporting Incremental Visual Data Classification

Automatic data classification is a computationally intensive task that presents variable precision and is considerably sensitive to the classifier configuration and to data representation, particularly for evolving data sets. Some of these issues can best be handled by methods that support users...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 21(2015), 1 vom: 10. Jan., Seite 4-17
1. Verfasser: Paiva, Jose Gustavo S (VerfasserIn)
Weitere Verfasser: Schwartz, William Robson, Pedrini, Helio, Minghim, Rosane
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM252627598
003 DE-627
005 20231224164518.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2014.2331979  |2 doi 
028 5 2 |a pubmed24n0842.xml 
035 |a (DE-627)NLM252627598 
035 |a (NLM)26357017 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Paiva, Jose Gustavo S  |e verfasserin  |4 aut 
245 1 3 |a An Approach to Supporting Incremental Visual Data Classification 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 01.12.2015 
500 |a Date Revised 11.09.2015 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Automatic data classification is a computationally intensive task that presents variable precision and is considerably sensitive to the classifier configuration and to data representation, particularly for evolving data sets. Some of these issues can best be handled by methods that support users' control over the classification steps. In this paper, we propose a visual data classification methodology that supports users in tasks related to categorization such as training set selection; model creation, application and verification; and classifier tuning. The approach is then well suited for incremental classification, present in many applications with evolving data sets. Data set visualization is accomplished by means of point placement strategies, and we exemplify the method through multidimensional projections and Neighbor Joining trees. The same methodology can be employed by a user who wishes to create his or her own ground truth (or perspective) from a previously unlabeled data set. We validate the methodology through its application to categorization scenarios of image and text data sets, involving the creation, application, verification, and adjustment of classification models 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Schwartz, William Robson  |e verfasserin  |4 aut 
700 1 |a Pedrini, Helio  |e verfasserin  |4 aut 
700 1 |a Minghim, Rosane  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 21(2015), 1 vom: 10. Jan., Seite 4-17  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:21  |g year:2015  |g number:1  |g day:10  |g month:01  |g pages:4-17 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2014.2331979  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 21  |j 2015  |e 1  |b 10  |c 01  |h 4-17