Multi-Observation Blind Deconvolution with an Adaptive Sparse Prior

This paper describes a robust algorithm for estimating a single latent sharp image given multiple blurry and/or noisy observations. The underlying multi-image blind deconvolution problem is solved by linking all of the observations together via a Bayesian-inspired penalty function, which couples the...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 36(2014), 8 vom: 01. Aug., Seite 1628-43
1. Verfasser: Zhang, Haichao (VerfasserIn)
Weitere Verfasser: Wipf, David, Zhang, Yanning
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM252592190
003 DE-627
005 20250219030432.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2013.241  |2 doi 
028 5 2 |a pubmed25n0841.xml 
035 |a (DE-627)NLM252592190 
035 |a (NLM)26353343 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Haichao  |e verfasserin  |4 aut 
245 1 0 |a Multi-Observation Blind Deconvolution with an Adaptive Sparse Prior 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 24.11.2015 
500 |a Date Revised 10.09.2015 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper describes a robust algorithm for estimating a single latent sharp image given multiple blurry and/or noisy observations. The underlying multi-image blind deconvolution problem is solved by linking all of the observations together via a Bayesian-inspired penalty function, which couples the unknown latent image along with a separate blur kernel and noise variance associated with each observation, all of which are estimated jointly from the data. This coupled penalty function enjoys a number of desirable properties, including a mechanism whereby the relative-concavity or sparsity is adapted as a function of the intrinsic quality of each corrupted observation. In this way, higher quality observations may automatically contribute more to the final estimate than heavily degraded ones, while troublesome local minima can largely be avoided. The resulting algorithm, which requires no essential tuning parameters, can recover a sharp image from a set of observations containing potentially both blurry and noisy examples, without knowing a priori the degradation type of each observation. Experimental results on both synthetic and real-world test images clearly demonstrate the efficacy of the proposed method 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Wipf, David  |e verfasserin  |4 aut 
700 1 |a Zhang, Yanning  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 36(2014), 8 vom: 01. Aug., Seite 1628-43  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:36  |g year:2014  |g number:8  |g day:01  |g month:08  |g pages:1628-43 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2013.241  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2014  |e 8  |b 01  |c 08  |h 1628-43