A Two-Stage Framework for 3D Face Reconstruction from RGBD Images

This paper proposes a new approach for 3D face reconstruction with RGBD images from an inexpensive commodity sensor. The challenges we face are: 1) substantial random noise and corruption are present in low-resolution depth maps; and 2) there is high degree of variability in pose and face expression...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 36(2014), 8 vom: 01. Aug., Seite 1493-504
1. Verfasser: Wang, Kangkan (VerfasserIn)
Weitere Verfasser: Wang, Xianwang, Pan, Zhigeng, Liu, Kai
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652c 4500
001 NLM252592115
003 DE-627
005 20250219030431.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2013.235  |2 doi 
028 5 2 |a pubmed25n0841.xml 
035 |a (DE-627)NLM252592115 
035 |a (NLM)26353333 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Kangkan  |e verfasserin  |4 aut 
245 1 2 |a A Two-Stage Framework for 3D Face Reconstruction from RGBD Images 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.03.2016 
500 |a Date Revised 10.09.2015 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a This paper proposes a new approach for 3D face reconstruction with RGBD images from an inexpensive commodity sensor. The challenges we face are: 1) substantial random noise and corruption are present in low-resolution depth maps; and 2) there is high degree of variability in pose and face expression. We develop a novel two-stage algorithm that effectively maps low-quality depth maps to realistic face models. Each stage is targeted toward a certain type of noise. The first stage extracts sparse errors from depth patches through the data-driven local sparse coding, while the second stage smooths noise on the boundaries between patches and reconstructs the global shape by combining local shapes using our template-based surface refinement. Our approach does not require any markers or user interaction. We perform quantitative and qualitative evaluations on both synthetic and real test sets. Experimental results show that the proposed approach is able to produce high-resolution 3D face models with high accuracy, even if inputs are of low quality, and have large variations in viewpoint and face expression 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Wang, Xianwang  |e verfasserin  |4 aut 
700 1 |a Pan, Zhigeng  |e verfasserin  |4 aut 
700 1 |a Liu, Kai  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 36(2014), 8 vom: 01. Aug., Seite 1493-504  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:36  |g year:2014  |g number:8  |g day:01  |g month:08  |g pages:1493-504 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2013.235  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2014  |e 8  |b 01  |c 08  |h 1493-504