Viewpoint Invariant Human Re-Identification in Camera Networks Using Pose Priors and Subject-Discriminative Features

Human re-identification across cameras with non-overlapping fields of view is one of the most important and difficult problems in video surveillance and analysis. However, current algorithms are likely to fail in real-world scenarios for several reasons. For example, surveillance cameras are typical...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 37(2015), 5 vom: 01. Mai, Seite 1095-108
1. Verfasser: Wu, Ziyan (VerfasserIn)
Weitere Verfasser: Li, Yang, Radke, Richard J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM252592069
003 DE-627
005 20231224164433.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2014.2360373  |2 doi 
028 5 2 |a pubmed24n0842.xml 
035 |a (DE-627)NLM252592069 
035 |a (NLM)26353331 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wu, Ziyan  |e verfasserin  |4 aut 
245 1 0 |a Viewpoint Invariant Human Re-Identification in Camera Networks Using Pose Priors and Subject-Discriminative Features 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 24.11.2015 
500 |a Date Revised 10.09.2015 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Human re-identification across cameras with non-overlapping fields of view is one of the most important and difficult problems in video surveillance and analysis. However, current algorithms are likely to fail in real-world scenarios for several reasons. For example, surveillance cameras are typically mounted high above the ground plane, causing serious perspective changes. Also, most algorithms approach matching across images using the same descriptors, regardless of camera viewpoint or human pose. Here, we introduce a re-identification algorithm that addresses both problems. We build a model for human appearance as a function of pose, using training data gathered from a calibrated camera. We then apply this "pose prior" in online re-identification to make matching and identification more robust to viewpoint. We further integrate person-specific features learned over the course of tracking to improve the algorithm's performance. We evaluate the performance of the proposed algorithm and compare it to several state-of-the-art algorithms, demonstrating superior performance on standard benchmarking datasets as well as a challenging new airport surveillance scenario 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Li, Yang  |e verfasserin  |4 aut 
700 1 |a Radke, Richard J  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 37(2015), 5 vom: 01. Mai, Seite 1095-108  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:37  |g year:2015  |g number:5  |g day:01  |g month:05  |g pages:1095-108 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2014.2360373  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 37  |j 2015  |e 5  |b 01  |c 05  |h 1095-108