Multiple Kernel Learning for Visual Object Recognition : A Review

Multiple kernel learning (MKL) is a principled approach for selecting and combining kernels for a given recognition task. A number of studies have shown that MKL is a useful tool for object recognition, where each image is represented by multiple sets of features and MKL is applied to combine differ...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 36(2014), 7 vom: 01. Juli, Seite 1354-69
1. Verfasser: Bucak, Serhat S (VerfasserIn)
Weitere Verfasser: Rong Jin, Jain, Anil K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. Review
LEADER 01000naa a22002652 4500
001 NLM252591844
003 DE-627
005 20231224164433.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2013.212  |2 doi 
028 5 2 |a pubmed24n0842.xml 
035 |a (DE-627)NLM252591844 
035 |a (NLM)26353308 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bucak, Serhat S  |e verfasserin  |4 aut 
245 1 0 |a Multiple Kernel Learning for Visual Object Recognition  |b A Review 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.03.2016 
500 |a Date Revised 10.09.2015 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Multiple kernel learning (MKL) is a principled approach for selecting and combining kernels for a given recognition task. A number of studies have shown that MKL is a useful tool for object recognition, where each image is represented by multiple sets of features and MKL is applied to combine different feature sets. We review the state-of-the-art for MKL, including different formulations and algorithms for solving the related optimization problems, with the focus on their applications to object recognition. One dilemma faced by practitioners interested in using MKL for object recognition is that different studies often provide conflicting results about the effectiveness and efficiency of MKL. To resolve this, we conduct extensive experiments on standard datasets to evaluate various approaches to MKL for object recognition. We argue that the seemingly contradictory conclusions offered by studies are due to different experimental setups. The conclusions of our study are: (i) given a sufficient number of training examples and feature/kernel types, MKL is more effective for object recognition than simple kernel combination (e.g., choosing the best performing kernel or average of kernels); and (ii) among the various approaches proposed for MKL, the sequential minimal optimization, semi-infinite programming, and level method based ones are computationally most efficient 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 4 |a Review 
700 1 |a Rong Jin  |e verfasserin  |4 aut 
700 1 |a Jain, Anil K  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 36(2014), 7 vom: 01. Juli, Seite 1354-69  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:36  |g year:2014  |g number:7  |g day:01  |g month:07  |g pages:1354-69 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2013.212  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2014  |e 7  |b 01  |c 07  |h 1354-69