Variational Bayesian Matrix Factorization for Bounded Support Data

A novel Bayesian matrix factorization method for bounded support data is presented. Each entry in the observation matrix is assumed to be beta distributed. As the beta distribution has two parameters, two parameter matrices can be obtained, which matrices contain only nonnegative values. In order to...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 37(2015), 4 vom: 01. Apr., Seite 876-89
1. Verfasser: Ma, Zhanyu (VerfasserIn)
Weitere Verfasser: Teschendorff, Andrew E, Leijon, Arne, Qiao, Yuanyuan, Zhang, Honggang, Guo, Jun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM252591763
003 DE-627
005 20231224164433.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2014.2353639  |2 doi 
028 5 2 |a pubmed24n0842.xml 
035 |a (DE-627)NLM252591763 
035 |a (NLM)26353300 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ma, Zhanyu  |e verfasserin  |4 aut 
245 1 0 |a Variational Bayesian Matrix Factorization for Bounded Support Data 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 24.11.2015 
500 |a Date Revised 10.09.2015 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a A novel Bayesian matrix factorization method for bounded support data is presented. Each entry in the observation matrix is assumed to be beta distributed. As the beta distribution has two parameters, two parameter matrices can be obtained, which matrices contain only nonnegative values. In order to provide low-rank matrix factorization, the nonnegative matrix factorization (NMF) technique is applied. Furthermore, each entry in the factorized matrices, i.e., the basis and excitation matrices, is assigned with gamma prior. Therefore, we name this method as beta-gamma NMF (BG-NMF). Due to the integral expression of the gamma function, estimation of the posterior distribution in the BG-NMF model can not be presented by an analytically tractable solution. With the variational inference framework and the relative convexity property of the log-inverse-beta function, we propose a new lower-bound to approximate the objective function. With this new lower-bound, we derive an analytically tractable solution to approximately calculate the posterior distributions. Each of the approximated posterior distributions is also gamma distributed, which retains the conjugacy of the Bayesian estimation. In addition, a sparse BG-NMF can be obtained by including a sparseness constraint to the gamma prior. Evaluations with synthetic data and real life data demonstrate the good performance of the proposed method 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Teschendorff, Andrew E  |e verfasserin  |4 aut 
700 1 |a Leijon, Arne  |e verfasserin  |4 aut 
700 1 |a Qiao, Yuanyuan  |e verfasserin  |4 aut 
700 1 |a Zhang, Honggang  |e verfasserin  |4 aut 
700 1 |a Guo, Jun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 37(2015), 4 vom: 01. Apr., Seite 876-89  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:37  |g year:2015  |g number:4  |g day:01  |g month:04  |g pages:876-89 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2014.2353639  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 37  |j 2015  |e 4  |b 01  |c 04  |h 876-89