Spatially-Constrained Similarity Measurefor Large-Scale Object Retrieval

One fundamental problem in object retrieval with the bag-of-words model is its lack of spatial information. Although various approaches are proposed to incorporate spatial constraints into the model, most of them are either too strict or too loose so that they are only effective in limited cases. In...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 36(2014), 6 vom: 01. Juni, Seite 1229-41
1. Verfasser: Xiaohui Shen (VerfasserIn)
Weitere Verfasser: Zhe Lin, Brandt, Jonathan, Ying Wu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM252591593
003 DE-627
005 20231224164433.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2013.237  |2 doi 
028 5 2 |a pubmed24n0842.xml 
035 |a (DE-627)NLM252591593 
035 |a (NLM)26353283 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xiaohui Shen  |e verfasserin  |4 aut 
245 1 0 |a Spatially-Constrained Similarity Measurefor Large-Scale Object Retrieval 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 25.11.2015 
500 |a Date Revised 10.09.2015 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a One fundamental problem in object retrieval with the bag-of-words model is its lack of spatial information. Although various approaches are proposed to incorporate spatial constraints into the model, most of them are either too strict or too loose so that they are only effective in limited cases. In this paper, a new spatially-constrained similarity measure (SCSM) is proposed to handle object rotation, scaling, view point change and appearance deformation. The similarity measure can be efficiently calculated by a voting-based method using inverted files. During the retrieval process, object localization in the database images can also be simultaneously achieved using SCSM without post-processing. Furthermore, based on the retrieval and localization results of SCSM, we introduce a novel and robust re-ranking method with the k-nearest neighbors of the query for automatically refining the initial search results. Extensive performance evaluations on six public data sets show that SCSM significantly outperforms other spatial models including RANSAC-based spatial verification, while k-NN re-ranking outperforms most state-of-the-art approaches using query expansion. We also adapted SCSM for mobile product image search with an iterative algorithm to simultaneously extract the product instance from the mobile query image, identify the instance, and retrieve visually similar product images. Experiments on two product image search data sets show that our approach can robustly localize and extract the product in the query image, and hence drastically improve the retrieval accuracy over baseline methods 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Zhe Lin  |e verfasserin  |4 aut 
700 1 |a Brandt, Jonathan  |e verfasserin  |4 aut 
700 1 |a Ying Wu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 36(2014), 6 vom: 01. Juni, Seite 1229-41  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:36  |g year:2014  |g number:6  |g day:01  |g month:06  |g pages:1229-41 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2013.237  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2014  |e 6  |b 01  |c 06  |h 1229-41