Associative Hierarchical Random Fields

This paper makes two contributions: the first is the proposal of a new model-The associative hierarchical random field (AHRF), and a novel algorithm for its optimization; the second is the application of this model to the problem of semantic segmentation. Most methods for semantic segmentation are f...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 36(2014), 6 vom: 01. Juni, Seite 1056-77
1. Verfasser: Ladický, L'ubor (VerfasserIn)
Weitere Verfasser: Russell, Chris, Kohli, Pushmeet, Torr, Philip H S
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM25259147X
003 DE-627
005 20250219030424.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2013.165  |2 doi 
028 5 2 |a pubmed25n0841.xml 
035 |a (DE-627)NLM25259147X 
035 |a (NLM)26353271 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ladický, L'ubor  |e verfasserin  |4 aut 
245 1 0 |a Associative Hierarchical Random Fields 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 25.11.2015 
500 |a Date Revised 10.09.2015 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper makes two contributions: the first is the proposal of a new model-The associative hierarchical random field (AHRF), and a novel algorithm for its optimization; the second is the application of this model to the problem of semantic segmentation. Most methods for semantic segmentation are formulated as a labeling problem for variables that might correspond to either pixels or segments such as super-pixels. It is well known that the generation of super pixel segmentations is not unique. This has motivated many researchers to use multiple super pixel segmentations for problems such as semantic segmentation or single view reconstruction. These super-pixels have not yet been combined in a principled manner, this is a difficult problem, as they may overlap, or be nested in such a way that the segmentations form a segmentation tree. Our new hierarchical random field model allows information from all of the multiple segmentations to contribute to a global energy. MAP inference in this model can be performed efficiently using powerful graph cut based move making algorithms. Our framework generalizes much of the previous work based on pixels or segments, and the resulting labelings can be viewed both as a detailed segmentation at the pixel level, or at the other extreme, as a segment selector that pieces together a solution like a jigsaw, selecting the best segments from different segmentations as pieces. We evaluate its performance on some of the most challenging data sets for object class segmentation, and show that this ability to perform inference using multiple overlapping segmentations leads to state-of-the-art results 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Russell, Chris  |e verfasserin  |4 aut 
700 1 |a Kohli, Pushmeet  |e verfasserin  |4 aut 
700 1 |a Torr, Philip H S  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 36(2014), 6 vom: 01. Juni, Seite 1056-77  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:36  |g year:2014  |g number:6  |g day:01  |g month:06  |g pages:1056-77 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2013.165  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2014  |e 6  |b 01  |c 06  |h 1056-77