Non-Rigid Graph Registration Using Active Testing Search

We present a new approach for matching sets of branching curvilinear structures that form graphs embedded in R2 or R3 and may be subject to deformations. Unlike earlier methods, ours does not rely on local appearance similarity nor does require a good initial alignment. Furthermore, it can cope with...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 37(2015), 3 vom: 01. März, Seite 625-38
1. Verfasser: Serradell, Eduard (VerfasserIn)
Weitere Verfasser: Pinheiro, Miguel Amável, Sznitman, Raphael, Kybic, Jan, Moreno-Noguer, Francesc, Fua, Pascal
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM252591429
003 DE-627
005 20231224164432.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2014.2343235  |2 doi 
028 5 2 |a pubmed24n0842.xml 
035 |a (DE-627)NLM252591429 
035 |a (NLM)26353266 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Serradell, Eduard  |e verfasserin  |4 aut 
245 1 0 |a Non-Rigid Graph Registration Using Active Testing Search 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 24.11.2015 
500 |a Date Revised 10.09.2015 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We present a new approach for matching sets of branching curvilinear structures that form graphs embedded in R2 or R3 and may be subject to deformations. Unlike earlier methods, ours does not rely on local appearance similarity nor does require a good initial alignment. Furthermore, it can cope with non-linear deformations, topological differences, and partial graphs. To handle arbitrary non-linear deformations, we use Gaussian process regressions to represent the geometrical mapping relating the two graphs. In the absence of appearance information, we iteratively establish correspondences between points, update the mapping accordingly, and use it to estimate where to find the most likely correspondences that will be used in the next step. To make the computation tractable for large graphs, the set of new potential matches considered at each iteration is not selected at random as with many RANSAC-based algorithms. Instead, we introduce a so-called Active Testing Search strategy that performs a priority search to favor the most likely matches and speed-up the process. We demonstrate the effectiveness of our approach first on synthetic cases and then on angiography data, retinal fundus images, and microscopy image stacks acquired at very different resolutions 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Pinheiro, Miguel Amável  |e verfasserin  |4 aut 
700 1 |a Sznitman, Raphael  |e verfasserin  |4 aut 
700 1 |a Kybic, Jan  |e verfasserin  |4 aut 
700 1 |a Moreno-Noguer, Francesc  |e verfasserin  |4 aut 
700 1 |a Fua, Pascal  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 37(2015), 3 vom: 01. März, Seite 625-38  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:37  |g year:2015  |g number:3  |g day:01  |g month:03  |g pages:625-38 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2014.2343235  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 37  |j 2015  |e 3  |b 01  |c 03  |h 625-38