A Bayesian Nonparametric Approach to Image Super-Resolution

Super-resolution methods form high-resolution images from low-resolution images. In this paper, we develop a new Bayesian nonparametric model for super-resolution. Our method uses a beta-Bernoulli process to learn a set of recurring visual patterns, called dictionary elements, from the data. Because...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 37(2015), 2 vom: 01. Feb., Seite 346-58
1. Verfasser: Polatkan, Gungor (VerfasserIn)
Weitere Verfasser: Zhou, Mingyuan, Carin, Lawrence, Blei, David, Daubechies, Ingrid
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM252591224
003 DE-627
005 20231224164432.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2014.2321404  |2 doi 
028 5 2 |a pubmed24n0842.xml 
035 |a (DE-627)NLM252591224 
035 |a (NLM)26353246 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Polatkan, Gungor  |e verfasserin  |4 aut 
245 1 2 |a A Bayesian Nonparametric Approach to Image Super-Resolution 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.05.2016 
500 |a Date Revised 10.09.2015 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Super-resolution methods form high-resolution images from low-resolution images. In this paper, we develop a new Bayesian nonparametric model for super-resolution. Our method uses a beta-Bernoulli process to learn a set of recurring visual patterns, called dictionary elements, from the data. Because it is nonparametric, the number of elements found is also determined from the data. We test the results on both benchmark and natural images, comparing with several other models from the research literature. We perform large-scale human evaluation experiments to assess the visual quality of the results. In a first implementation, we use Gibbs sampling to approximate the posterior. However, this algorithm is not feasible for large-scale data. To circumvent this, we then develop an online variational Bayes (VB) algorithm. This algorithm finds high quality dictionaries in a fraction of the time needed by the Gibbs sampler 
650 4 |a Journal Article 
700 1 |a Zhou, Mingyuan  |e verfasserin  |4 aut 
700 1 |a Carin, Lawrence  |e verfasserin  |4 aut 
700 1 |a Blei, David  |e verfasserin  |4 aut 
700 1 |a Daubechies, Ingrid  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 37(2015), 2 vom: 01. Feb., Seite 346-58  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:37  |g year:2015  |g number:2  |g day:01  |g month:02  |g pages:346-58 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2014.2321404  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 37  |j 2015  |e 2  |b 01  |c 02  |h 346-58