Combinatorial Clustering and the Beta Negative Binomial Process

We develop a Bayesian nonparametric approach to a general family of latent class problems in which individuals can belong simultaneously to multiple classes and where each class can be exhibited multiple times by an individual. We introduce a combinatorial stochastic process known as the negative bi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 37(2015), 2 vom: 01. Feb., Seite 290-306
1. Verfasser: Broderick, Tamara (VerfasserIn)
Weitere Verfasser: Mackey, Lester, Paisley, John, Jordan, Michael I
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM252591186
003 DE-627
005 20231224164432.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2014.2318721  |2 doi 
028 5 2 |a pubmed24n0842.xml 
035 |a (DE-627)NLM252591186 
035 |a (NLM)26353242 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Broderick, Tamara  |e verfasserin  |4 aut 
245 1 0 |a Combinatorial Clustering and the Beta Negative Binomial Process 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.05.2016 
500 |a Date Revised 10.09.2015 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a We develop a Bayesian nonparametric approach to a general family of latent class problems in which individuals can belong simultaneously to multiple classes and where each class can be exhibited multiple times by an individual. We introduce a combinatorial stochastic process known as the negative binomial process ( NBP ) as an infinite-dimensional prior appropriate for such problems. We show that the NBP is conjugate to the beta process, and we characterize the posterior distribution under the beta-negative binomial process ( BNBP) and hierarchical models based on the BNBP (the HBNBP). We study the asymptotic properties of the BNBP and develop a three-parameter extension of the BNBP that exhibits power-law behavior. We derive MCMC algorithms for posterior inference under the HBNBP , and we present experiments using these algorithms in the domains of image segmentation, object recognition, and document analysis 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Mackey, Lester  |e verfasserin  |4 aut 
700 1 |a Paisley, John  |e verfasserin  |4 aut 
700 1 |a Jordan, Michael I  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 37(2015), 2 vom: 01. Feb., Seite 290-306  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:37  |g year:2015  |g number:2  |g day:01  |g month:02  |g pages:290-306 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2014.2318721  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 37  |j 2015  |e 2  |b 01  |c 02  |h 290-306