Nested Hierarchical Dirichlet Processes

We develop a nested hierarchical Dirichlet process (nHDP) for hierarchical topic modeling. The nHDP generalizes the nested Chinese restaurant process (nCRP) to allow each word to follow its own path to a topic node according to a per-document distribution over the paths on a shared tree. This allevi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 37(2015), 2 vom: 01. Feb., Seite 256-70
1. Verfasser: Paisley, John (VerfasserIn)
Weitere Verfasser: Wang, Chong, Blei, David M, Jordan, Michael I
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM25259116X
003 DE-627
005 20231224164432.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2014.2318728  |2 doi 
028 5 2 |a pubmed24n0842.xml 
035 |a (DE-627)NLM25259116X 
035 |a (NLM)26353240 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Paisley, John  |e verfasserin  |4 aut 
245 1 0 |a Nested Hierarchical Dirichlet Processes 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 24.11.2015 
500 |a Date Revised 10.09.2015 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We develop a nested hierarchical Dirichlet process (nHDP) for hierarchical topic modeling. The nHDP generalizes the nested Chinese restaurant process (nCRP) to allow each word to follow its own path to a topic node according to a per-document distribution over the paths on a shared tree. This alleviates the rigid, single-path formulation assumed by the nCRP, allowing documents to easily express complex thematic borrowings. We derive a stochastic variational inference algorithm for the model, which enables efficient inference for massive collections of text documents. We demonstrate our algorithm on 1.8 million documents from The New York Times and 2.7 million documents from Wikipedia 
650 4 |a Journal Article 
700 1 |a Wang, Chong  |e verfasserin  |4 aut 
700 1 |a Blei, David M  |e verfasserin  |4 aut 
700 1 |a Jordan, Michael I  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 37(2015), 2 vom: 01. Feb., Seite 256-70  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:37  |g year:2015  |g number:2  |g day:01  |g month:02  |g pages:256-70 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2014.2318728  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 37  |j 2015  |e 2  |b 01  |c 02  |h 256-70