Domain Anomaly Detection in Machine Perception : A System Architecture and Taxonomy

We address the problem of anomaly detection in machine perception. The concept of domain anomaly is introduced as distinct from the conventional notion of anomaly used in the literature. We propose a unified framework for anomaly detection which exposes the multifaceted nature of anomalies and sugge...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 36(2014), 5 vom: 01. Mai, Seite 845-59
1. Verfasser: Kittler, Josef (VerfasserIn)
Weitere Verfasser: Christmas, William, de Campos, Teófilo, Windridge, David, Yan, Fei, Illingworth, John, Osman, Magda
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM25259097X
003 DE-627
005 20231224164432.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2013.209  |2 doi 
028 5 2 |a pubmed24n0842.xml 
035 |a (DE-627)NLM25259097X 
035 |a (NLM)26353221 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kittler, Josef  |e verfasserin  |4 aut 
245 1 0 |a Domain Anomaly Detection in Machine Perception  |b A System Architecture and Taxonomy 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 25.11.2015 
500 |a Date Revised 10.09.2015 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We address the problem of anomaly detection in machine perception. The concept of domain anomaly is introduced as distinct from the conventional notion of anomaly used in the literature. We propose a unified framework for anomaly detection which exposes the multifaceted nature of anomalies and suggest effective mechanisms for identifying and distinguishing each facet as instruments for domain anomaly detection. The framework draws on the Bayesian probabilistic reasoning apparatus which clearly defines concepts such as outlier, noise, distribution drift, novelty detection (object, object primitive), rare events, and unexpected events. Based on these concepts we provide a taxonomy of domain anomaly events. One of the mechanisms helping to pinpoint the nature of anomaly is based on detecting incongruence between contextual and noncontextual sensor(y) data interpretation. The proposed methodology has wide applicability. It underpins in a unified way the anomaly detection applications found in the literature. To illustrate some of its distinguishing features, in here the domain anomaly detection methodology is applied to the problem of anomaly detection for a video annotation system 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Christmas, William  |e verfasserin  |4 aut 
700 1 |a de Campos, Teófilo  |e verfasserin  |4 aut 
700 1 |a Windridge, David  |e verfasserin  |4 aut 
700 1 |a Yan, Fei  |e verfasserin  |4 aut 
700 1 |a Illingworth, John  |e verfasserin  |4 aut 
700 1 |a Osman, Magda  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 36(2014), 5 vom: 01. Mai, Seite 845-59  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:36  |g year:2014  |g number:5  |g day:01  |g month:05  |g pages:845-59 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2013.209  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2014  |e 5  |b 01  |c 05  |h 845-59