Towards Making Unlabeled Data Never Hurt

It is usually expected that learning performance can be improved by exploiting unlabeled data, particularly when the number of labeled data is limited. However, it has been reported that, in some cases existing semi-supervised learning approaches perform even worse than supervised ones which only us...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 37(2015), 1 vom: 01. Jan., Seite 175-88
Auteur principal: Li, Yu-Feng (Auteur)
Autres auteurs: Zhou, Zhi-Hua
Format: Article en ligne
Langue:English
Publié: 2015
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article Research Support, Non-U.S. Gov't