Rank-Based Similarity Search : Reducing the Dimensional Dependence

This paper introduces a data structure for k-NN search, the Rank Cover Tree (RCT), whose pruning tests rely solely on the comparison of similarity values; other properties of the underlying space, such as the triangle inequality, are not employed. Objects are selected according to their ranks with r...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 37(2015), 1 vom: 01. Jan., Seite 136-50
1. Verfasser: Houle, Michael E (VerfasserIn)
Weitere Verfasser: Nett, Michael
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM252590902
003 DE-627
005 20250219030417.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2014.2343223  |2 doi 
028 5 2 |a pubmed25n0841.xml 
035 |a (DE-627)NLM252590902 
035 |a (NLM)26353214 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Houle, Michael E  |e verfasserin  |4 aut 
245 1 0 |a Rank-Based Similarity Search  |b Reducing the Dimensional Dependence 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 24.11.2015 
500 |a Date Revised 10.09.2015 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper introduces a data structure for k-NN search, the Rank Cover Tree (RCT), whose pruning tests rely solely on the comparison of similarity values; other properties of the underlying space, such as the triangle inequality, are not employed. Objects are selected according to their ranks with respect to the query object, allowing much tighter control on the overall execution costs. A formal theoretical analysis shows that with very high probability, the RCT returns a correct query result in time that depends very competitively on a measure of the intrinsic dimensionality of the data set. The experimental results for the RCT show that non-metric pruning strategies for similarity search can be practical even when the representational dimension of the data is extremely high. They also show that the RCT is capable of meeting or exceeding the level of performance of state-of-the-art methods that make use of metric pruning or other selection tests involving numerical constraints on distance values 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Nett, Michael  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 37(2015), 1 vom: 01. Jan., Seite 136-50  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:37  |g year:2015  |g number:1  |g day:01  |g month:01  |g pages:136-50 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2014.2343223  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 37  |j 2015  |e 1  |b 01  |c 01  |h 136-50