Matrix Completion for Weakly-Supervised Multi-Label Image Classification

In the last few years, image classification has become an incredibly active research topic, with widespread applications. Most methods for visual recognition are fully supervised, as they make use of bounding boxes or pixelwise segmentations to locate objects of interest. However, this type of manua...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 37(2015), 1 vom: 01. Jan., Seite 121-35
1. Verfasser: Cabral, Ricardo (VerfasserIn)
Weitere Verfasser: De la Torre, Fernando, Costeira, João Paulo, Bernardino, Alexandre
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM252590899
003 DE-627
005 20231224164432.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2014.2343234  |2 doi 
028 5 2 |a pubmed24n0842.xml 
035 |a (DE-627)NLM252590899 
035 |a (NLM)26353213 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cabral, Ricardo  |e verfasserin  |4 aut 
245 1 0 |a Matrix Completion for Weakly-Supervised Multi-Label Image Classification 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 24.11.2015 
500 |a Date Revised 10.09.2015 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In the last few years, image classification has become an incredibly active research topic, with widespread applications. Most methods for visual recognition are fully supervised, as they make use of bounding boxes or pixelwise segmentations to locate objects of interest. However, this type of manual labeling is time consuming, error prone and it has been shown that manual segmentations are not necessarily the optimal spatial enclosure for object classifiers. This paper proposes a weakly-supervised system for multi-label image classification. In this setting, training images are annotated with a set of keywords describing their contents, but the visual concepts are not explicitly segmented in the images. We formulate the weakly-supervised image classification as a low-rank matrix completion problem. Compared to previous work, our proposed framework has three advantages: (1) Unlike existing solutions based on multiple-instance learning methods, our model is convex. We propose two alternative algorithms for matrix completion specifically tailored to visual data, and prove their convergence. (2) Unlike existing discriminative methods, our algorithm is robust to labeling errors, background noise and partial occlusions. (3) Our method can potentially be used for semantic segmentation. Experimental validation on several data sets shows that our method outperforms state-of-the-art classification algorithms, while effectively capturing each class appearance 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a De la Torre, Fernando  |e verfasserin  |4 aut 
700 1 |a Costeira, João Paulo  |e verfasserin  |4 aut 
700 1 |a Bernardino, Alexandre  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 37(2015), 1 vom: 01. Jan., Seite 121-35  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:37  |g year:2015  |g number:1  |g day:01  |g month:01  |g pages:121-35 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2014.2343234  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 37  |j 2015  |e 1  |b 01  |c 01  |h 121-35