Contextualizing Object Detection and Classification

We investigate how to iteratively and mutually boost object classification and detection performance by taking the outputs from one task as the context of the other one. While context models have been quite popular, previous works mainly concentrate on co-occurrence relationship within classes and f...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 37(2015), 1 vom: 01. Jan., Seite 13-27
1. Verfasser: Chen, Qiang (VerfasserIn)
Weitere Verfasser: Song, Zheng, Dong, Jian, Huang, Zhongyang, Hua, Yang, Yan, Shuicheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM252590813
003 DE-627
005 20231224164432.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2014.2343217  |2 doi 
028 5 2 |a pubmed24n0842.xml 
035 |a (DE-627)NLM252590813 
035 |a (NLM)26353205 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Qiang  |e verfasserin  |4 aut 
245 1 0 |a Contextualizing Object Detection and Classification 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 24.11.2015 
500 |a Date Revised 10.09.2015 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We investigate how to iteratively and mutually boost object classification and detection performance by taking the outputs from one task as the context of the other one. While context models have been quite popular, previous works mainly concentrate on co-occurrence relationship within classes and few of them focus on contextualization from a top-down perspective, i.e. high-level task context. In this paper, our system adopts a new method for adaptive context modeling and iterative boosting. First, the contextualized support vector machine (Context-SVM) is proposed, where the context takes the role of dynamically adjusting the classification score based on the sample ambiguity, and thus the context-adaptive classifier is achieved. Then, an iterative training procedure is presented. In each step, Context-SVM, associated with the output context from one task (object classification or detection), is instantiated to boost the performance for the other task, whose augmented outputs are then further used to improve the former task by Context-SVM. The proposed solution is evaluated on the object classification and detection tasks of PASCAL Visual Object Classes Challenge (VOC) 2007, 2010 and SUN09 data sets, and achieves the state-of-the-art performance 
650 4 |a Journal Article 
700 1 |a Song, Zheng  |e verfasserin  |4 aut 
700 1 |a Dong, Jian  |e verfasserin  |4 aut 
700 1 |a Huang, Zhongyang  |e verfasserin  |4 aut 
700 1 |a Hua, Yang  |e verfasserin  |4 aut 
700 1 |a Yan, Shuicheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 37(2015), 1 vom: 01. Jan., Seite 13-27  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:37  |g year:2015  |g number:1  |g day:01  |g month:01  |g pages:13-27 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2014.2343217  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 37  |j 2015  |e 1  |b 01  |c 01  |h 13-27