Robust Recovery of Corrupted Low-RankMatrix by Implicit Regularizers
Low-rank matrix recovery algorithms aim to recover a corrupted low-rank matrix with sparse errors. However, corrupted errors may not be sparse in real-world problems and the relationship between ℓ1 regularizer on noise and robust M-estimators is still unknown. This paper proposes a general robust fr...
Publié dans: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 36(2014), 4 vom: 01. Apr., Seite 770-83 |
---|---|
Auteur principal: | |
Autres auteurs: | , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2014
|
Accès à la collection: | IEEE transactions on pattern analysis and machine intelligence |
Sujets: | Journal Article Research Support, Non-U.S. Gov't |
Accès en ligne |
Volltext |