Robust Recovery of Corrupted Low-RankMatrix by Implicit Regularizers

Low-rank matrix recovery algorithms aim to recover a corrupted low-rank matrix with sparse errors. However, corrupted errors may not be sparse in real-world problems and the relationship between ℓ1 regularizer on noise and robust M-estimators is still unknown. This paper proposes a general robust fr...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 36(2014), 4 vom: 01. Apr., Seite 770-83
Auteur principal: He, Ran (Auteur)
Autres auteurs: Tan, Tieniu, Wang, Liang
Format: Article en ligne
Langue:English
Publié: 2014
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article Research Support, Non-U.S. Gov't