Robust Recovery of Corrupted Low-RankMatrix by Implicit Regularizers

Low-rank matrix recovery algorithms aim to recover a corrupted low-rank matrix with sparse errors. However, corrupted errors may not be sparse in real-world problems and the relationship between ℓ1 regularizer on noise and robust M-estimators is still unknown. This paper proposes a general robust fr...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 36(2014), 4 vom: 01. Apr., Seite 770-83
1. Verfasser: He, Ran (VerfasserIn)
Weitere Verfasser: Tan, Tieniu, Wang, Liang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:Low-rank matrix recovery algorithms aim to recover a corrupted low-rank matrix with sparse errors. However, corrupted errors may not be sparse in real-world problems and the relationship between ℓ1 regularizer on noise and robust M-estimators is still unknown. This paper proposes a general robust framework for low-rank matrix recovery via implicit regularizers of robust M-estimators, which are derived from convex conjugacy and can be used to model arbitrarily corrupted errors. Based on the additive form of half-quadratic optimization, proximity operators of implicit regularizers are developed such that both low-rank structure and corrupted errors can be alternately recovered. In particular, the dual relationship between the absolute function in ℓ1 regularizer and Huber M-estimator is studied, which establishes a connection between robust low-rank matrix recovery methods and M-estimators based robust principal component analysis methods. Extensive experiments on synthetic and real-world data sets corroborate our claims and verify the robustness of the proposed framework
Beschreibung:Date Completed 27.11.2015
Date Revised 10.09.2015
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2013.188