Background Subtraction with DirichletProcess Mixture Models

Video analysis often begins with background subtraction. This problem is often approached in two steps-a background model followed by a regularisation scheme. A model of the background allows it to be distinguished on a per-pixel basis from the foreground, whilst the regularisation combines informat...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 36(2014), 4 vom: 01. Apr., Seite 670-83
1. Verfasser: Haines, Tom S F (VerfasserIn)
Weitere Verfasser: Tao Xiang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM252590686
003 DE-627
005 20231224164432.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2013.239  |2 doi 
028 5 2 |a pubmed24n0842.xml 
035 |a (DE-627)NLM252590686 
035 |a (NLM)26353192 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Haines, Tom S F  |e verfasserin  |4 aut 
245 1 0 |a Background Subtraction with DirichletProcess Mixture Models 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.11.2015 
500 |a Date Revised 10.09.2015 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Video analysis often begins with background subtraction. This problem is often approached in two steps-a background model followed by a regularisation scheme. A model of the background allows it to be distinguished on a per-pixel basis from the foreground, whilst the regularisation combines information from adjacent pixels. We present a new method based on Dirichlet process Gaussian mixture models, which are used to estimate per-pixel background distributions. It is followed by probabilistic regularisation. Using a non-parametric Bayesian method allows per-pixel mode counts to be automatically inferred, avoiding over-/under- fitting. We also develop novel model learning algorithms for continuous update of the model in a principled fashion as the scene changes. These key advantages enable us to outperform the state-of-the-art alternatives on four benchmarks 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Tao Xiang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 36(2014), 4 vom: 01. Apr., Seite 670-83  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:36  |g year:2014  |g number:4  |g day:01  |g month:04  |g pages:670-83 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2013.239  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2014  |e 4  |b 01  |c 04  |h 670-83