Unsupervised Discovery of Subspace Trends

This paper presents unsupervised algorithms for discovering previously unknown subspace trends in high-dimensional data sets without the benefit of prior information. A subspace trend is a sustained pattern of gradual/progressive changes within an unknown subset of feature dimensions. A fundamental...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 37(2015), 10 vom: 01. Okt., Seite 2131-45
1. Verfasser: Xu, Yan (VerfasserIn)
Weitere Verfasser: Qiu, Peng, Roysam, Badrinath
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000caa a22002652 4500
001 NLM252590651
003 DE-627
005 20250219030415.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2015.2394475  |2 doi 
028 5 2 |a pubmed25n0841.xml 
035 |a (DE-627)NLM252590651 
035 |a (NLM)26353189 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xu, Yan  |e verfasserin  |4 aut 
245 1 0 |a Unsupervised Discovery of Subspace Trends 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.05.2016 
500 |a Date Revised 28.08.2018 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a This paper presents unsupervised algorithms for discovering previously unknown subspace trends in high-dimensional data sets without the benefit of prior information. A subspace trend is a sustained pattern of gradual/progressive changes within an unknown subset of feature dimensions. A fundamental challenge to subspace trend discovery is the presence of irrelevant data dimensions, noise, outliers, and confusion from multiple subspace trends driven by independent factors that are mixed in with each other. These factors can obscure the trends in conventional dimension reduction & projection based data visualizations. To overcome these limitations, we propose a novel graph-theoretic neighborhood similarity measure for detecting concordant progressive changes across data dimensions. Using this measure, we present an unsupervised algorithm for trend-relevant feature selection, subspace trend discovery, quantification of trend strength, and validation. Our method successfully identified verifiable subspace trends in diverse synthetic and real-world biomedical datasets. Visualizations derived from the selected trend-relevant features revealed biologically meaningful hidden subspace trend(s) that were obscured by irrelevant features and noise. Although our examples are drawn from the biological domain, the proposed algorithm is broadly applicable to exploratory analysis of high-dimensional data including visualization, hypothesis generation, knowledge discovery, and prediction in diverse other applications 
650 4 |a Journal Article 
650 4 |a Research Support, N.I.H., Extramural 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Qiu, Peng  |e verfasserin  |4 aut 
700 1 |a Roysam, Badrinath  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 37(2015), 10 vom: 01. Okt., Seite 2131-45  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:37  |g year:2015  |g number:10  |g day:01  |g month:10  |g pages:2131-45 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2015.2394475  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 37  |j 2015  |e 10  |b 01  |c 10  |h 2131-45