Multilinear Discriminant Analysis for Higher-Order Tensor Data Classification

In the past decade, great efforts have been made to extend linear discriminant analysis for higher-order data classification, generally referred to as multilinear discriminant analysis (MDA). Existing examples include general tensor discriminant analysis (GTDA) and discriminant analysis with tensor...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 36(2014), 12 vom: 14. Dez., Seite 2524-37
1. Verfasser: Li, Qun (VerfasserIn)
Weitere Verfasser: Schonfeld, Dan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM252590333
003 DE-627
005 20231224164431.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2014.2342214  |2 doi 
028 5 2 |a pubmed24n0842.xml 
035 |a (DE-627)NLM252590333 
035 |a (NLM)26353155 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Qun  |e verfasserin  |4 aut 
245 1 0 |a Multilinear Discriminant Analysis for Higher-Order Tensor Data Classification 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 25.11.2015 
500 |a Date Revised 10.09.2015 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In the past decade, great efforts have been made to extend linear discriminant analysis for higher-order data classification, generally referred to as multilinear discriminant analysis (MDA). Existing examples include general tensor discriminant analysis (GTDA) and discriminant analysis with tensor representation (DATER). Both the two methods attempt to resolve the problem of tensor mode dependency by iterative approximation. GTDA is known to be the first MDA method that converges over iterations. However, its performance relies highly on the tuning of the parameter in the scatter difference criterion. Although DATER usually results in better classification performance, it does not converge, yet the number of iterations executed has a direct impact on DATER's performance. In this paper, we propose a closed-form solution to the scatter difference objective in GTDA, namely, direct GTDA (DGTDA) which also gets rid of parameter tuning. We demonstrate that DGTDA outperforms GTDA in terms of both efficiency and accuracy. In addition, we propose constrained multilinear discriminant analysis (CMDA) that learns the optimal tensor subspace by iteratively maximizing the scatter ratio criterion. We prove both theoretically and experimentally that the value of the scatter ratio criterion in CMDA approaches its extreme value, if it exists, with bounded error, leading to superior and more stable performance in comparison to DATER 
650 4 |a Journal Article 
700 1 |a Schonfeld, Dan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 36(2014), 12 vom: 14. Dez., Seite 2524-37  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:36  |g year:2014  |g number:12  |g day:14  |g month:12  |g pages:2524-37 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2014.2342214  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2014  |e 12  |b 14  |c 12  |h 2524-37