Asymptotic Generalization Bound of Fisher's Linear Discriminant Analysis

Fisher's linear discriminant analysis (FLDA) is an important dimension reduction method in statistical pattern recognition. It has been shown that FLDA is asymptotically Bayes optimal under the homoscedastic Gaussian assumption. However, this classical result has the following two major limitat...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 36(2014), 12 vom: 14. Dez., Seite 2325-37
1. Verfasser: Bian, Wei (VerfasserIn)
Weitere Verfasser: Tao, Dacheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM252590201
003 DE-627
005 20231224164431.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2014.2327983  |2 doi 
028 5 2 |a pubmed24n0842.xml 
035 |a (DE-627)NLM252590201 
035 |a (NLM)26353142 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bian, Wei  |e verfasserin  |4 aut 
245 1 0 |a Asymptotic Generalization Bound of Fisher's Linear Discriminant Analysis 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 25.11.2015 
500 |a Date Revised 10.09.2015 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Fisher's linear discriminant analysis (FLDA) is an important dimension reduction method in statistical pattern recognition. It has been shown that FLDA is asymptotically Bayes optimal under the homoscedastic Gaussian assumption. However, this classical result has the following two major limitations: 1) it holds only for a fixed dimensionality D, and thus does not apply when D and the training sample size N are proportionally large; 2) it does not provide a quantitative description on how the generalization ability of FLDA is affected by D and N. In this paper, we present an asymptotic generalization analysis of FLDA based on random matrix theory, in a setting where both D and N increase and D/N → γ ∈ [0,1). The obtained lower bound of the generalization discrimination power overcomes both limitations of the classical result, i.e., it is applicable when D and N are proportionally large and provides a quantitative description of the generalization ability of FLDA in terms of the ratio γ = D/N and the population discrimination power. Besides, the discrimination power bound also leads to an upper bound on the generalization error of binary-classification with FLDA 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Tao, Dacheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 36(2014), 12 vom: 14. Dez., Seite 2325-37  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:36  |g year:2014  |g number:12  |g day:14  |g month:12  |g pages:2325-37 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2014.2327983  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2014  |e 12  |b 14  |c 12  |h 2325-37