Shape Representation and Registration in Vector Implicit Spaces : Adopting a Closed-Form Solution in the Optimization Process

In this paper, a novel method to solve the shape registration problem covering both global and local deformations is proposed. The vector distance function (VDF) is used to represent source and target shapes. The problem is formulated as an energy optimization process by matching the VDFs of the sou...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 35(2013), 3 vom: 14. März, Seite 763-8
Auteur principal: Abd El Munim, Hossam E (Auteur)
Autres auteurs: Farag, Amal A, Farag, Aly A
Format: Article en ligne
Langue:English
Publié: 2013
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article
Description
Résumé:In this paper, a novel method to solve the shape registration problem covering both global and local deformations is proposed. The vector distance function (VDF) is used to represent source and target shapes. The problem is formulated as an energy optimization process by matching the VDFs of the source and target shapes. The minimization process results in estimating the transformation parameters for the global and local deformation cases. Gradient descent optimization handles the computation of scaling, rotation, and translation matrices used to minimize the global differences between source and target shapes. Nonrigid deformations require a large number of parameters which make the use of the gradient descent minimization a very time-consuming process. We propose to compute the local deformation parameters using a closed-form solution as a linear system of equations derived from approximating an objective function. Extensive experimental validations and comparisons performed on generalized 2D shape data demonstrate the robustness and effectiveness of the method
Description:Date Completed 25.11.2015
Date Revised 10.09.2015
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2012.245