Variational Infinite Hidden Conditional Random Fields

Hidden conditional random fields (HCRFs) are discriminative latent variable models which have been shown to successfully learn the hidden structure of a given classification problem. An Infinite hidden conditional random field is a hidden conditional random field with a countably infinite number of...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 37(2015), 9 vom: 14. Sept., Seite 1917-29
1. Verfasser: Bousmalis, Konstantinos (VerfasserIn)
Weitere Verfasser: Zafeiriou, Stefanos, Morency, Louis-Philippe, Pantic, Maja, Ghahramani, Zoubin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM252590147
003 DE-627
005 20231224164431.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2014.2388228  |2 doi 
028 5 2 |a pubmed24n0842.xml 
035 |a (DE-627)NLM252590147 
035 |a (NLM)26353136 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bousmalis, Konstantinos  |e verfasserin  |4 aut 
245 1 0 |a Variational Infinite Hidden Conditional Random Fields 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 24.11.2015 
500 |a Date Revised 10.09.2015 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Hidden conditional random fields (HCRFs) are discriminative latent variable models which have been shown to successfully learn the hidden structure of a given classification problem. An Infinite hidden conditional random field is a hidden conditional random field with a countably infinite number of hidden states, which rids us not only of the necessity to specify a priori a fixed number of hidden states available but also of the problem of overfitting. Markov chain Monte Carlo (MCMC) sampling algorithms are often employed for inference in such models. However, convergence of such algorithms is rather difficult to verify, and as the complexity of the task at hand increases the computational cost of such algorithms often becomes prohibitive. These limitations can be overcome by variational techniques. In this paper, we present a generalized framework for infinite HCRF models, and a novel variational inference approach on a model based on coupled Dirichlet Process Mixtures, the HCRF-DPM. We show that the variational HCRF-DPM is able to converge to a correct number of represented hidden states, and performs as well as the best parametric HCRFs-chosen via cross-validation-for the difficult tasks of recognizing instances of agreement, disagreement, and pain in audiovisual sequences 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Zafeiriou, Stefanos  |e verfasserin  |4 aut 
700 1 |a Morency, Louis-Philippe  |e verfasserin  |4 aut 
700 1 |a Pantic, Maja  |e verfasserin  |4 aut 
700 1 |a Ghahramani, Zoubin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 37(2015), 9 vom: 14. Sept., Seite 1917-29  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:37  |g year:2015  |g number:9  |g day:14  |g month:09  |g pages:1917-29 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2014.2388228  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 37  |j 2015  |e 9  |b 14  |c 09  |h 1917-29