Spherical and Hyperbolic Embeddings of Data

Many computer vision and pattern recognition problems may be posed as the analysis of a set of dissimilarities between objects. For many types of data, these dissimilarities are not euclidean (i.e., they do not represent the distances between points in a euclidean space), and therefore cannot be iso...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 36(2014), 11 vom: 01. Nov., Seite 2255-69
1. Verfasser: Wilson, Richard C (VerfasserIn)
Weitere Verfasser: Hancock, Edwin R, Pekalska, Elzbieta, Duin, Robert P W
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM252589424
003 DE-627
005 20231224164430.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2014.2316836  |2 doi 
028 5 2 |a pubmed24n0842.xml 
035 |a (DE-627)NLM252589424 
035 |a (NLM)26353065 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wilson, Richard C  |e verfasserin  |4 aut 
245 1 0 |a Spherical and Hyperbolic Embeddings of Data 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 25.11.2015 
500 |a Date Revised 10.09.2015 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Many computer vision and pattern recognition problems may be posed as the analysis of a set of dissimilarities between objects. For many types of data, these dissimilarities are not euclidean (i.e., they do not represent the distances between points in a euclidean space), and therefore cannot be isometrically embedded in a euclidean space. Examples include shape-dissimilarities, graph distances and mesh geodesic distances. In this paper, we provide a means of embedding such non-euclidean data onto surfaces of constant curvature. We aim to embed the data on a space whose radius of curvature is determined by the dissimilarity data. The space can be either of positive curvature (spherical) or of negative curvature (hyperbolic). We give an efficient method for solving the spherical and hyperbolic embedding problems on symmetric dissimilarity data. Our approach gives the radius of curvature and a method for approximating the objects as points on a hyperspherical manifold without optimisation. For objects which do not reside exactly on the manifold, we develop a optimisation-based procedure for approximate embedding on a hyperspherical manifold. We use the exponential map between the manifold and its local tangent space to solve the optimisation problem locally in the euclidean tangent space. This process is efficient enough to allow us to embed data sets of several thousand objects. We apply our method to a variety of data including time warping functions, shape similarities, graph similarity and gesture similarity data. In each case the embedding maintains the local structure of the data while placing the points in a metric space 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Hancock, Edwin R  |e verfasserin  |4 aut 
700 1 |a Pekalska, Elzbieta  |e verfasserin  |4 aut 
700 1 |a Duin, Robert P W  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 36(2014), 11 vom: 01. Nov., Seite 2255-69  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:36  |g year:2014  |g number:11  |g day:01  |g month:11  |g pages:2255-69 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2014.2316836  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2014  |e 11  |b 01  |c 11  |h 2255-69